
Generative Adversarial
Networks

1

presented by Ian Goodfellow

presentation co-developed with Aaron Courville

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

In today’s talk…

• “Generative Adversarial Networks” Goodfellow et al., NIPS
2014

• “Conditional Generative Adversarial Nets” Mirza and
Osindero, NIPS Deep Learning Workshop 2014

• “On Distinguishability Criteria for Estimating Generative
Models” Goodfellow, ICLR Workshop 2015

• “Deep Generative Image Models using a Laplacian Pyramid
of Adversarial Networks” Denton, Chintala, et al., ArXiv
2015

2

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Generative modeling

• Have training examples x ~ pdata(x)
• Want a model that can draw samples: x ~ pmodel(x)
• Where pmodel ≈ pdata

3

x ~ pdata(x) x ~ pmodel(x)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Why generative models?

• Conditional generative models
- Speech synthesis: Text ⇒ Speech
- Machine Translation: French ⇒ English

• French: Si mon tonton tond ton tonton, ton tonton sera tondu.
• English: If my uncle shaves your uncle, your uncle will be shaved

- Image ⇒ Image segmentation

• Environment simulator
- Reinforcement learning
- Planning

• Leverage unlabeled data?
4

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Maximum likelihood: the dominant approach

• ML objective function

5

✓

⇤
= max

✓

1

m

mX

i=1

log p

⇣
x

(i)
; ✓

⌘

1

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Undirected graphical models

• Flagship undirected graphical model: Deep
Boltzmann machines

• Several “hidden layers” h

6

p(h, x) =
1

Z
p̃(h, x)

p̃(h, x) = exp(�E(h, x))

Z =
�

h,x

p̃(h, x)

h(1)

h(2)

h(3)

x

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow 7

Boltzmann Machines: disadvantage

• Model is badly parameterized for learning high
quality samples: peaked distributions -> slow mixing

• Why poor mixing?

MNIST dataset 1st layer features (RBM)

Coordinated
flipping of low-
level features

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Directed graphical models

• Two problems:
1. Summation over exponentially many states in h
2. Posterior inference, i.e. calculating p(h | x), is intractable.

8

✓

⇤
= max

✓

1

m

mX

i=1

log p

⇣
x

(i)
; ✓

⌘

p(h, x) =

1

Z

p̃(h, x)

p̃(h, x) = exp (�E (h, x))

Z =

X

h,x

p̃(h, x)

d

d✓

i

log p(h, x) =

d

d✓

i

[log p̃(h, x)� logZ(✓)]

d

d✓

i

logZ(✓) =

d

d✓i
Z(✓)

Z(✓)

p(x, h) = p(x | h(1)
)p(h

(1) | h(2)
) . . . p(h

(L�1) | h(L)
)p(h

(L)
)

1

h(1)

h(2)

h(3)

x

d

d�i
log p(x) =

1

p(x)

d

d�i
p(x)

p(x) =
�

h

p(x | h)p(h)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Variational Autoencoder

9

E[x|z]

Differentiable
decoder

x sampled
from data

Differentiable
encoder

Sample from
q(z)

Noise

z

x

BRIEF ARTICLE

THE AUTHOR

Maximize log p(x)�DKL (q(x)kp(z | x))

1

(Kingma and Welling, 2014, Rezende et al 2014)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Generative stochastic networks

• General strategy: Do not write a formula for p(x),
just learn to sample incrementally.

• Main issue: Subject to some of the same constraints
on mixing as undirected graphical models.

10

...

(Bengio et al 2013)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Generative adversarial networks

• Don’t write a formula for p(x), just learn to sample
directly.

• No Markov Chain

• No variational bound

• How? By playing a game.

11

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Game theory: the basics

• N>1 players
• Clearly defined set of actions each player can take
• Clearly defined relationship between actions and

outcomes
• Clearly defined value of each outcome
• Can’t control the other player’s actions

12

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Two-player zero-sum game

• Your winnings + your opponent’s winnings = 0
• Minimax theorem: a rational strategy exists for all

such finite games

13

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

• Strategy: specification of which moves you make in which
circumstances.

• Equilibrium: each player’s strategy is the best possible for
their opponent’s strategy.

• Example: Rock-paper-scissors:

- Mixed strategy equilibrium

- Choose your action at random

14

0 -1 1

1 0 -1

-1 1 0

Yo
u

Your opponent
Rock Paper Scissors

Ro
ck

Pa
pe

r
Sc

iss
or

s

Two-player zero-sum game

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Adversarial nets framework

15

• A game between two players:
1. Discriminator D
2. Generator G

• D tries to discriminate between:
- A sample from the data distribution.
- And a sample from the generator G.

• G tries to “trick” D by generating samples that are
hard for D to distinguish from data.

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Adversarial nets framework

16

Input noise
Z

Differentiable
function G

x sampled
from model

Differentiable
function D

D tries to
output 0

x sampled
from data

Differentiable
function D

D tries to
output 1

xx

z

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

• Minimax value function:

Zero-sum game

17

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Generator
pushes
down

Discriminator
pushes up

Discriminator’s
ability to

recognize data as
being real

Discriminator’s
ability to
recognize
generator

samples as being
fake

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Discriminator strategy

• Optimal strategy for any pmodel(x) is always

18

✓

⇤
= max

✓

1

m

mX

i=1

log p

⇣
x

(i)
; ✓

⌘

p(h, x) =

1

Z

p̃(h, x)

p̃(h, x) = exp (�E (h, x))

Z =

X

h,x

p̃(h, x)

d

d✓

i

log p(x) =

d

d✓

i

"
log

X

h

p̃(h, x)� logZ(✓)

#

d

d✓

i

logZ(✓) =

d

d✓i
Z(✓)

Z(✓)

p(x, h) = p(x | h(1)
)p(h

(1) | h(2)
) . . . p(h

(L�1) | h(L)
)p(h

(L)
)

d

d✓

i

log p(x) =

d

d✓i
p(x)

p(x)

p(x) =

X

h

p(x | h)p(h)

D(x) =

p

data

(x)

p

data

(x) + p

model

(x)

1

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

19

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

20

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

21

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learning process

22

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Theoretical properties

• Theoretical properties (assuming infinite data, infinite
model capacity, direct updating of generator’s
distribution):
- Unique global optimum.

- Optimum corresponds to data distribution.

- Convergence to optimum guaranteed.

23

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

In practice: no proof that SGD converges

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Oscillation

24

(Alec Radford)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Visualization of model samples

25

MNIST TFD

CIFAR-10 (fully connected) CIFAR-10 (convolutional)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Learned 2-D manifold of MNIST

26

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

1. Draw sample (A)

2. Draw sample (B)

3. Simulate samples
along the path
between A and B

4. Repeat steps 1-3 as
desired.

Visualizing trajectories

27

A

B

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Visualization of model trajectories

28

MNIST digit dataset Toronto Face Dataset (TFD)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow 29

CIFAR-10
(convolutional)

Visualization of model trajectories

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

GANs vs VAEs
• Both use backprop through continuous random number generation

• VAE:

- generator gets direct output target

- need REINFORCE to do discrete latent variables

- possible underfitting due to variational approximation

- gets global image composition right but blurs details

• GAN:

- generator never sees the data

- need REINFORCE to do discrete visible variables

- possible underfitting due to non-convergence

- gets local image features right but not global structure

30

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

VAE + GAN

31

(Alec Radford, 2015)

VAE VAE+GAN

-Reduce VAE blurriness
-Reduce GAN oscillation

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

MMD-based generator nets

32

(Li et al 2015) (Dziugaite et al 2015)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Supervised Generator Nets

33

(Dosovitskiy et al 2014)

Generator nets are
powerful—it is our

ability to infer a
mapping from an
unobserved space

that is limited.

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

General game

34

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Extensions

35

• Inference net:
- Learn a network to model p(z | x)

- Wake/Sleep style approach

- Sample z from prior

- Sample x from p(z|x)

- Learn mapping from x to z
- Infinite training set!

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Extensions

36

• Conditional model:

- Learn p(x | y)
- Discriminator is trained

on (x,y) pairs

- Generator net gets y
and z as input

- Useful for : Translation,
speech synth, image
segmentation.

(Mirza and Osindero, 2014)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Laplacian Pyramid

37

(Denton + Chintala, et al 2015)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

LAPGAN results
• 40% of samples mistaken by humans for real photos

38

(Denton + Chintala, et al 2015)

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Open problems

• Is non-convergence a serious problem in
practice?

• If so, how can we prevent non-
convergence?

• Is there a better loss function for the
generator?

39

Thank You.

40

Questions?

