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Generative modeling

* Have training examples X ~ Pdata(X )

* Want a model that can draw samples: X ~ Pmodel(X )

* Where Pmodel = Pdata
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Why generative models?

* Conditional generative models

- Speech synthesis: Text = Speech

- Machine Translation: French = English

e French: SI mon tonton tond ton tonton, ton tonton sera tondu.
* English: If my uncle shaves your uncle, your uncle will be shaved

- Image = Image segmentation

e Environment simulator

- Reinforcement learning

- Planning

* |Leverage unlabeled data/
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Maximum likelihood: the dominant approach

* ML objective function
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Undirected graphical models

* Flagship undirected graphical model: Deep
Boltzmann machines

* Several "hidden layers™ h L0 O +o0 OO
1 @GO00 -+ OO
p(h,x) = Ep(haﬂf) :
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Boltzmann Machines: disadvantage

* Model is badly parameterized for learning high
quality samples: peaked distributions -> slow mixing

* Why poor mixing!
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MNIST dataset 1st layer features (RBM)
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Directed graphical models

p(z, h) = p(z | AD)p(RY | A2)) . p(hE=D | BE)p(R )

d 1 d
| —

* [wo problems:

|. Summation over exponentially many states in h

2. Posterior inference, i.e. calculating p(h | X), is intractable.
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Variational Autoencoder
( Noise )
@ ( Sample from )

Differentiable Differentiable
encoder decoder
( X sampled ) ( )
from data 2t

Maximize log p(x) — Dk, (q(x)||p(z | )

(Kingma and Welling, 2014, Rezende et al 2014)
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Generative stochastic networks

» General strategy: Do not write a formula for p(x),
just learn to sample incrementally.

* Main issue: Subject to some of the same constraints
on mixing as undirected graphical models.

(Bengio et al 201 3)
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Generative adversarial networks

* Don't write a formula for p(Xx), just learn to sample
directly.

e No Markov Chain
 No variational bound

* How! By playing a game.
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Game theory: the basics

* N> players
* (learly defined set of actions each player can take

* (learly defined relationship between actions and
outcomes

» (learly defined value of each outcome

» (Can't control the other player's actions
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Two-player zero-sum game

* Your winnings + your opponents winnings = 0

* Minimax theorem: a rational strategy exists for all
such finite games
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Two-player zero-sum game

* Strategy: specification of which moves you make in which
circumstances.

* Equilibrium: each player's strategy Is the best possible for
their opponent’s strategy.

Your opponent
* Example: Rock-paper-scissors: Rock  Paper Scissors

- Mixed strategy equilibrium 0 N |

Rock

- Choose your action at random

D)
S | 0 | -I

Scissors Paper
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Adversarial nets framework

* A game between two players:

|. Discriminator D
2. Generator GG

e D tries to discriminate between:

- A sample from the data distribution.
- And a sample from the generator G.

* G tries to "trick” D by generating samples that are
hard for D to distinguish from data.

Deep Learning Workshop, ICML 2015 --- lan Goodfellow



Adversarial nets framework

D tries to
output 1

Q0 -+ OO0

Differentiable
function D
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Differentiable
function D

X sampled
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Differentiable
function G




Zero-sum game

e Minimax value function:

mén mgx V(D,G) = Emwpdata(w) log D(x)| +

A A A

Discriminator Discriminator’s

pushes up ability to
recognize data as
Gzzigior being real
down

Czps(m)l0g(1 = D(G(2)))]

A

Discriminator’s
ability to
recognize
oenerator

samples as being

fake
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Discriminator strategy

» Optimal strategy for any Pmodel(X) is always

pdata(x)
Pdata ($) - Pmodel (x)
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Learning process

D(x) Data distribution
l / Model distribution
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Learning process

D(x) Data distribution
l / Model distribution
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Learning process

D(x) Data distribution
l / Model distribution
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Learning process

D(x) Data distribution
l / Model distribution
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Poorly fit model After updating D After updating G =~ Mixed strategy
equilibrium
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Theoretical properties

min max V(D, G) = Exwpy, (2)[108 D(@)] + Eznp, () [log(1 — D(G(2)))]

* Theoretical properties (assuming infinite data, infinite
model capacity, direct updating of generator’s
distribution):

- Unique global optimum.
- Optimum corresponds to data distribution.

- Convergence to optimum guaranteed.

In practice: no proof that SGD converges
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Oscillation

GAN learning gaussian

1.0
- = P(data)
- G(2)
0.8 — D(x)
0.6
0
o
x
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Visualization of model samples
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Visualizing trajectories
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Visualization of model trajectories
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Visualization of model trajectories
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GANSs vs VAEs

® Both use backprop through continuous random number generation
e VAE:

- generator gets direct output target

- need REINFORCE to do discrete latent variables

- possible underfitting due to variational approximation

- gets global image composition right but blurs details
e GAN:

- generator never sees the data

- need REINFORCE to do discrete visible variables

- possible underfitting due to non-convergence

- gets local image features right but not global structure
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VAE + GAN

VAE VAE+GAN

-Reduce VAE blurriness
-Reduce GAN oscillation (Alec Radford, 2015)
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Supervised Generator Nets

P

d Generator nets are
5 powerful—it is our
il e :
~ability to infer a
mapping from an
unobserved space
that is limited.

nw o= 00~Q

< ~t+ - —Q0 C QO Q >

~ 7”1 (Dosovitskiy et al 2014)
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General game
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Extensions

* Inference net:
- Learn a network to model p(z | x)
- Wake/Sleep style approach
- Sample z from prior
- Sample x from p(z|x)
- Learn mapping from x to z

- Infinrte training set!
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Extensions

e Conditional model:

- Learn p(x | y)

- Discriminator Is trained
on (X,y) pairs

- (Generator net gets y
and Z as Input

- Usefu
speec

for;

N syn

ranslation,

th, Image

segmentation.

{ g Generated tag
ax passenger, line,
.:uh rem, invemn portation, ilway
p«, ople, ma k pl station, passengers,
11 structures, lmn railways, signals, rail,
purl. car rails
hicken, fattening,
ooked, pean cTearm,
food, raspberry, delic wookie, ho made,
St | homema ade bread, biscuit, bak
x" ‘
creck, lake, along,
river, rudw, lrcc.x l
ley, woods,

(Mirza and Osmdero ZO|4)
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Laplacian Pyramid

(Denton + Chintala, et al 2015)
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LAPGAN results

o 40% of samples mistaken by humans for real photos

(Denton + Chintala, et al 2015)
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Open problems

® |[s non-convergence a serious problem in
practice?

e |[fso, how can we prevent non-
convergence?

® |s there a better loss function for the
generator?
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Thank You.

Questions?



