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Fully Visible Belief Nets
• Explicit formula based on chain 

rule:
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Fully Visible Belief Nets
• Disadvantages: 

• O(n) non-parallelizable sample 
generation runtime 

• Generation not controlled by a 
latent code
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Notable FVBNs

PixelCNN 
(van den Ord et al 2016)MADE 

(Germain et al 2016)

NADE 
(Larochelle et al 2011)

“Autoregressive models”
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Disadvantages: 
- Transformation must be 

invertible 
- Latent dimension must 

match visible dimension

64x64 ImageNet Samples 
Real NVP (Dinh et al 2016)

e.g. Nonlinear ICA (Hyvärinen 1999)
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Variational Learning
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Latent variable models often have intractable density
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Variational Bound
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Variational inference: maximize with respect to q 
Variational learning: maximize with respect to parameters of p
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Variational Autoencoder
(Kingma and Welling 2013, Rezende et al 2014)

CIFAR-10 samples 
(Kingma et al 2016)

Define a neural network that predicts optimal q
Define p(z | x ) via another neural network

Whole model can be fit via 
maximization of a single objective 

function with gradient- based 
optimization
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For more information…

• Max Welling will teach a lesson on variational 
inference
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Deep Boltzmann Machines

(Salakhutdinov and Hinton, 2009)
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Generative Stochastic 
Networks

(Bengio et. al, 2013)
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Generative Adversarial Networks

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

(Goodfellow et al., 2014)
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Combining VAEs and GANs: 
Adversarial Variational Bayes

(Mescheder et al, 2017)

Related: 
-Adversarial autoencoders 
-Adversarially learned inference 
-BiGANs
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What can you do with 
generative models?

• Simulated environments and training data 

• Missing data 

• Semi-supervised learning 

• Multiple correct answers 

• Realistic generation tasks 

• Simulation by prediction 

• Learn useful embeddings
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Generative models for simulated 
training data

(Shrivastava et al., 2016)
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What is in this image?

(Yeh et al., 2016)
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Generative modeling reveals a face

(Yeh et al., 2016)
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Supervised Discriminator

Input

Real

Hidden 
units

Fake

Input

Real dog

Hidden 
units

FakeReal cat

(Odena 2016, Salimans et al 2016)
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Semi-Supervised Classification 
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6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

Figure 3: (Left) samples generated by model dur-
ing semi-supervised training. Samples can be
clearly distinguished from images coming from
MNIST dataset. (Right) Samples generated with
minibatch discrimination. Samples are com-
pletely indistinguishable from dataset images.

The MNIST dataset contains 60, 000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-
tion [20] and add Gaussian noise to the output
of each layer of the discriminator. Table 1 sum-
marizes our results.

Samples generated by the generator during
semi-supervised learning using feature match-
ing (Section 3.1) do not look visually appealing
(left Fig. 3). By using minibatch discrimination
instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing. Similarly, researchers in our institution were not able to find any artifacts that would al-
low them to distinguish samples. However, semi-supervised learning with minibatch discrimination
does not produce as good a classifier as does feature matching.

Model Number of incorrectly predicted test examples
for a given number of labeled samples

20 50 100 200

DGN [21] 333 ± 14

Virtual Adversarial [22] 212
CatGAN [14] 191 ± 10

Skip Deep Generative Model [23] 132 ± 7

Ladder network [24] 106 ± 37

Auxiliary Deep Generative Model [23] 96 ± 2

Our model 1677 ± 452 221 ± 136 93 ± 6.5 90 ± 4.2

Ensemble of 10 of our models 1134 ± 445 142 ± 96 86 ± 5.6 81 ± 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

6.2 CIFAR-10

Model Test error rate for
a given number of labeled samples

1000 2000 4000 8000

Ladder network [24] 20.40±0.47

CatGAN [14] 19.58±0.46

Our model 21.83±2.01 19.61±2.09 18.63±2.32 17.72±1.82

Ensemble of 10 of our models 19.22±0.54 17.25±0.66 15.59±0.47 14.87±0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

CIFAR-10 is a small, well studied dataset of 32 ⇥ 32 natural images. We use this data set to study
semi-supervised learning, as well as to examine the visual quality of samples that can be achieved.
For the discriminator in our GAN we use a 9 layer deep convolutional network with dropout and
weight normalization. The generator is a 4 layer deep CNN with batch normalization. Table 2
summarizes our results on the semi-supervised learning task.

6

(Salimans et al 2016)

MNIST (Permutation Invariant)
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Semi-Supervised Classification 

(Salimans et al 2016)

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

Figure 3: (Left) samples generated by model dur-
ing semi-supervised training. Samples can be
clearly distinguished from images coming from
MNIST dataset. (Right) Samples generated with
minibatch discrimination. Samples are com-
pletely indistinguishable from dataset images.

The MNIST dataset contains 60, 000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-
tion [20] and add Gaussian noise to the output
of each layer of the discriminator. Table 1 sum-
marizes our results.

Samples generated by the generator during
semi-supervised learning using feature match-
ing (Section 3.1) do not look visually appealing
(left Fig. 3). By using minibatch discrimination
instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
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Model Percentage of incorrectly predicted test examples
for a given number of labeled samples

500 1000 2000

DGN [21] 36.02±0.10

Virtual Adversarial [22] 24.63

Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.61±0.24

Our model 18.44 ± 4.8 8.11 ± 1.3 6.16 ± 0.58

Ensemble of 10 of our models 5.88 ± 1.0

Figure 5: (Left) Error rate on SVHN. (Right) Samples from the generator for SVHN.

6.4 ImageNet
We tested our techniques on a dataset of unprecedented scale: 128 ⇥ 128 images from the
ILSVRC2012 dataset with 1,000 categories. To our knowledge, no previous publication has ap-
plied a generative model to a dataset with both this large of a resolution and this large a number
of object classes. The large number of object classes is particularly challenging for GANs due to
their tendency to underestimate the entropy in the distribution. We extensively modified a publicly
available implementation of DCGANs2 using TensorFlow [26] to achieve high performance, using
a multi-GPU implementation. DCGANs without modification learn some basic image statistics and
generate contiguous shapes with somewhat natural color and texture but do not learn any objects.
Using the techniques described in this paper, GANs learn to generate objects that resemble animals,
but with incorrect anatomy. Results are shown in Fig. 6.

Figure 6: Samples generated from the ImageNet dataset. (Left) Samples generated by a DCGAN.
(Right) Samples generated using the techniques proposed in this work. The new techniques enable
GANs to learn recognizable features of animals, such as fur, eyes, and noses, but these features are
not correctly combined to form an animal with realistic anatomical structure.

7 Conclusion

Generative adversarial networks are a promising class of generative models that has so far been
held back by unstable training and by the lack of a proper evaluation metric. This work presents
partial solutions to both of these problems. We propose several techniques to stabilize training
that allow us to train models that were previously untrainable. Moreover, our proposed evaluation
metric (the Inception score) gives us a basis for comparing the quality of these models. We apply
our techniques to the problem of semi-supervised learning, achieving state-of-the-art results on a
number of different data sets in computer vision. The contributions made in this work are of a
practical nature; we hope to develop a more rigorous theoretical understanding in future work.

2https://github.com/carpedm20/DCGAN-tensorflow
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• Multiple correct answers 
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Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)

would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can

545

(Lotter et al 2016)

What happens next?
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(Lotter et al 2016)
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iGAN

youtube

(Zhu et al., 2016)

https://www.youtube.com/watch?v=9c4z6YsBGQ0
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Introspective Adversarial 
Networks

youtube

(Brock et al., 2016)

https://www.youtube.com/watch?v=FDELBFSeqQs
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Image to Image Translation

Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day!night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges!handbags, compared to ground truth.

(Isola et al., 2016)

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.
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Unsupervised Image-to-Image Translation

(Liu et al., 2017)

Day to night
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CycleGAN

(Zhu et al., 2017)
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Text-to-Image Synthesis

(Zhang et al., 2016)

This bird has a 
yellow belly and 
tarsus, grey back, 
wings, and brown 
throat, nape with a 
black face 
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What can you do with 
generative models?

• Simulated environments and training data 

• Missing data 

• Semi-supervised learning 

• Multiple correct answers 

• Realistic generation tasks 

• Simulation by prediction 

• Learn useful embeddings
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Simulating particle physics

(de Oliveira et al., 2017)

Save millions of 
dollars of CPU time 

by predicting 
outcomes of explicit 

simulations
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What can you do with GANs?
• Simulated environments and training data 

• Missing data 

• Semi-supervised learning 

• Multiple correct answers 

• Realistic generation tasks 

• Simulation by prediction 

• Learn useful embeddings
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Vector Space ArithmeticCHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

common is that one could imagine learning about each of them without having to

see all the configurations of all the others. Radford et al. (2015) demonstrated that
a generative model can learn a representation of images of faces, with separate
directions in representation space capturing different underlying factors of variation.
Figure 15.9 demonstrates that one direction in representation space corresponds
to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
fixed a priori. There is no need to have labels for the hidden unit classifiers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, so long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all of the configurations of the n � 1 other
features by examples covering all of these combinations of values. This form of
statistical separability is what allows one to generalize to new configurations of a
person’s features that have never been seen during training.

552

Man 
with glasses

Man Woman

Woman with Glasses

(Radford et al, 2015)
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Learning interpretable latent codes / 
controlling the generation process

InfoGAN (Chen et al 2016)
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Plug and Play Generative 
Networks

• New state of the art generative model (Nguyen et al 
2016) 

• Generates 227x227 realistic images from all 
ImageNet classes 

• Combines adversarial training, moment matching, 
denoising autoencoders, and Langevin sampling
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PPGN Samples
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Abstract

Generating high-resolution, photo-realistic images has
been a long-standing goal in machine learning. Recently,
Nguyen et al. [36] showed one interesting way to synthesize
novel images by performing gradient ascent in the latent
space of a generator network to maximize the activations
of one or multiple neurons in a separate classifier network.
In this paper we extend this method by introducing an addi-
tional prior on the latent code, improving both sample qual-
ity and sample diversity, leading to a state-of-the-art gen-
erative model that produces high quality images at higher
resolutions (227 ⇥ 227) than previous generative models,
and does so for all 1000 ImageNet categories. In addition,
we provide a unified probabilistic interpretation of related
activation maximization methods and call the general class
of models “Plug and Play Generative Networks.” PPGNs
are composed of 1) a generator network G that is capable
of drawing a wide range of image types and 2) a replace-
able “condition” network C that tells the generator what
to draw. We demonstrate the generation of images condi-
tioned on a class (when C is an ImageNet or MIT Places
classification network) and also conditioned on a caption
(when C is an image captioning network). Our method also
improves the state of the art of Multifaceted Feature Visual-
ization [39], which generates the set of synthetic inputs that
activate a neuron in order to better understand how deep
neural networks operate. Finally, we show that our model
performs reasonably well at the task of image inpainting.
While image models are used in this paper, the approach is
modality-agnostic and can be applied to many types of data.

1. Introduction

Recent years have seen generative models that are in-
creasingly capable of synthesizing diverse, realistic images

Figure 1: Images synthetically generated by Plug and Play
Generative Networks at high-resolution (227x227) for four
ImageNet classes. Not only are many images nearly photo-
realistic, but samples within a class are diverse.

that capture both the fine-grained details and global coher-
ence of natural images [52, 26, 9, 15, 42, 23]. However,
many important open challenges remain, including (1) pro-
ducing photo-realistic images at high resolutions [29], (2)
training generators that can produce a wide variety of im-
ages (e.g. all 1000 ImageNet classes) instead of only one or
a few types (e.g. faces or bedrooms [42]), and (3) producing
a diversity of samples that match the diversity in the dataset
instead of modeling only a subset of the data distribution
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PPGN for caption to image

Noiseless Joint PPGN-h. We sample from this model
with (✏

1

, ✏

2

, ✏

3

) = (10

�5

, 1, 10

�17

) following the same up-
date rule in Eq. 11 (we need noise to make it a proper sam-
pling procedure, but found that infinitesimally small noise
produces better and more diverse images, which is to be
expected given that the DAE in this variant was trained
without noise). Interestingly, the chain mixes substantially
faster than DGN-AM (Figs. S13e & S13b) although the
only difference between two treatments is the existence of
the learned p(h) prior. Overall, the Noiseless Joint PPGN-
h produces a large amount of sample diversity (Fig. 2).
Compared to the Joint PPGN-h, the Noiseless Joint PPGN-
h produces better image quality, but mixes slightly slower
(Figs. S13 & S14). Sweeping across the noise levels dur-
ing sampling, we noted that larger noise amounts often re-
sults in worse image quality, but not necessarily faster mix-
ing speed (Fig. S15). Also, as expected, a small ✏

1

mul-
tiplier makes the chain mix faster, and a large one pulls
the samples towards being generic instead of class-specific
(Fig. S24).

Evaluating image generative models is challenging, and
there is not yet a commonly accepted quantitative perfor-
mance measure [51]. Here, we qualitatively evaluate sam-
ple diversity of the Noiseless Joint PPGN-h variant by run-
ning 10 sampling chains, each for 200 steps, to produce
2000 samples, and filtering out samples with class probabil-
ity of less than 0.97. From the remaining, we randomly pick
400 samples and plot them in a grid t-SNE [54] (Figs. S12
& S11). More examples for the reader’s evaluation of sam-
ple quality and diversity are provided in Figs. S22 & S23.
To better observe the mixing speed, we show videos of sam-
pling chains (with one sample per frame; no samples filtered
out) from within classes and between 10 different classes at
https://goo.gl/36S0Dy.

4. Additional results

In this section, we take the noiseless PPGN model and
demonstrate its capabilities on several different tasks.

4.1. Generating images with different condition

networks

A compelling property that makes PPGN different from
other existing generative models is that one can “plug and
play” with different prior and condition components (as
shown in Eq. 2) and ask the model to perform new tasks,
including challenging the generator to produce images that
it has never seen before. Here, we demonstrate this feature
by replacing the p(y|x) component with different networks.

Generating images conditioned on classes

Above we showed that PPGN could generate a diversity
of high quality samples for ImageNet classes (Figs. 1 & 2
& Sec. 3.5). Here, we test whether the generator G within

Figure 4: Images synthesized conditioned on MIT Places
[62] classes instead of ImageNet classes.

the PPGN can generalize to new types of images that it has
never seen before. Specifically, we sample with a differ-
ent p(y|x) model: an AlexNet DNN [25] trained to clas-
sify 205 categories of scene images from the MIT Places
dataset [62]. Similar to DGN-AM [36], the PPGN generates
realistic-looking images for classes that the generator was
never trained on, such as “alley” or “hotel room” (Fig. 4).
Side-by-side samples produced by DGN-AM and PPGN are
shown in Fig. S17.

Generating images conditioned on captions

Figure 5: Images synthesized to match a user description.
A PPGN containing the image captioning model from [8]
can generate reasonable images that differ based on user-
provided captions (e.g. red car vs. blue car, oranges vs.
a pile of oranges). For each caption, we show 3 images
synthesized starting from random initializations (more in
Fig. S19).

Instead of conditioning on classes, we can also condition
the image generation on a caption (Fig. 3g). Here, we swap
in an image-captioning recurrent network (called LRCN)
from [8] that was trained on the MS COCO dataset [31] to
predict a caption y given an image x. Specifically, LRCN is
a two-layer LSTM network that generates captions condi-
tioned on features extracted from the output softmax layer
of AlexNet [25].

7

(Nguyen et al 2016)
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Basic idea
• Langevin sampling repeatedly adds noise and 

gradient of log p(x,y) to generate samples (Markov 
chain) 

• Denoising autoencoders estimate the required 
gradient 

• Use a special denoising autoencoder that has been 
trained with multiple losses, including a GAN loss, 
to obtain best results
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Sampling without class 
gradient

(Nguyen et al 2016)
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GAN loss is a key ingredient

(a) Real images

(b) Joint PPGN-h (Limg + Lh1 + Lh + LGAN )

(c) LGAN removed (Limg + Lh1 + Lh)

(d) Lh1 removed: Limg + Lh + LGAN

(e) Lh removed: Limg + Lh1 + LGAN

Figure S8: A comparison of images produced by different generators G, each trained with a different loss combination
(below each image). L

img

, L
h1 , and L

h

are L

2

reconstruction losses respectively in the pixel (x), pool5 feature (h
1

) and fc6

feature (h) space. G is trained to map h ! x, i.e. reconstructing images from fc6 features. In the Joint PPGN-h treatment
(Sec. 3.4), G is trained with a combination of 4 losses (panel b). Here, we perform an ablation study on this loss combination
to understand the effect of each loss, and find a combination that produces the best image quality. We found that removing the
GAN loss yields blurry results (panel c). The Noiseless Joint PPGN-h variant (Sec. 3.5) is trained with the loss combination
that produces the best image quality (panel e). Compared to pool5, fc6 feature matching loss often produce the worse image
quality because it is effectively encouraging generated images to match the high-level abstract statistics of real images instead
of low-level statistics [16]. Our result is in consistent with Dosovitskiy & Brox [9].
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Raw data Reconstruction 
by PPGN

Reconstruction 
by PPGN 

without GAN
Images from Nguyen et al 2016 

First observed by Dosovitskiy et al 2016
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To be continued…

• Generative Models II will be taught by Aaron 
Courville
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For more information…

www.deeplearningbook.org

http://www.deeplearningbook.org

