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Fully Visible Beliet Nets

o Explicit formula based on chain (Frey et al, 1996)

rule:

n
pmodel(m) — pmodel(xl) Hpmodel(mi | L1,y... 7$7L—1)

AN
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Fully Visible Beliet Nets

e Disadvantages:

e O(n) non-parallelizable sample

generation runtime

o (Generation not controlled by a

latent code



Notable FVBNs
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PixelCNN
(van den Ord et al 2016)

(Larochelle et al 2011) (Germain et al 2016)

“Autoregressive models”

(Goodfellow 2017)



Change of Variables

)

e.g. Nonlinear ICA (Hyvarinen 1999)

Yy =g(x) = pz(x) = py(g(x)) |det (

Disadvantages:

- Transtformation must be
invertible

- Latent dimension must

match visible dimension

64x64 ImageNet Samples
Real NVP (Dinh et al 2016)

(Goodfellow 2017)
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Variational Learning

%) pmodel(w) — /pmodel(mv ZWZ

@ Latent variable models often have intractable density



Variational Bound

log p(x) > log p(x) — Dk1 (¢(2)||p(z | x))
:Ezwq lng(ajv Z) T H(Q>

Variational inference: maximize with respect to ¢

Variational learning: maximize with respect to parameters of p



Variational Autoencoder

(Kingma and Welling 2013, Rezende et al 2014)
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function with gradient- based CIFAR—lOsapls

optimization (Kingma et al 2016)

(Goodfellow 2017)



For more information...

e Max Welling will teach a lesson on variational

inference

(Goodfellow 2017)
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Deep Boltzmann Machines
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(Salakhutdinov and Hinton, 2009)
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Generative Stochastic

Networks
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Generative Adversarial Networks

D tries to make

D(G(z)) near 0,

(G tries to make

D(G(z)) near 1

D(x) tries to be
near 1
Differentiable
function D
r sampled from
data

xr sampled from

model

Difterentiable
function G

Input noise z

(Goodfellow et al., 2014)

(Goodfellow 2017)



Combining VAEs and GANSs:
Adversarial Variational Bayes

(Ta 771)

AVB

VB
(full-
rank)

HMC

(Mescheder et al, 2017)

(pe, 7)
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Related:

-Adversaria.

- autoencoders

-Adversaria.
-Bi(GANs

ly learned inference

(Goodfellow 2017)



What can you do with
cenerative models?

Missing data

e Semi-supervised learning
Multiple correct answers
Realistic generation tasks
Simulation by prediction

Learn useful embeddings

(Goodfellow 2017)



QUARTZ

TEACHING AID

Apple's first research paper tries to solve a

problem facing every company working on
Al




Generative models for simulated

training data

Unlabeled Real Images

:
|

Synthetic Refined

(Shrivastava et al., 2016)
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Simulated environments and training data
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What is in this image’

(Yeh et al., 2016)



(Generative modeling reveals a face

(Yeh et al., 2016)
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Supervised Discriminator

Hidden

units

(Odena 2016, Salimans et al 2016)

(Goodfellow 2017)



Semi-Supervised Classification

MNIST (Permutation Invariant)

Model Number of incorrectly predicted test examples
for a given number of labeled samples
20 50 100 200
DGN [21] 333 = 14
Virtual Adversarial [22] 212
CatGAN [14] 191 = 10
Skip Deep Generative Model [23] 132 = 7
[Ladder network [24] 1060 = 37
Auxiliary Deep Generative Model [23] 906 = 2
Our model 1677 = 452 221 = 136 93 = 6.5 90 = 4.2
Ensemble of 10 of our models 1134 = 445 142 = 96 306 = 5.6 81 = 4.3

(Salimans et al 2016) S



Semi-Supervised Classification

CIFAR-10

Model Test error rate for
a given number of labeled samples
1000 2000 4000 8000
[Ladder network [24] 20.40x=0.47
CatGAN [14] 19.58=0.46
Our model 21.83x2.01 19.61x=2.09 18.631=2.32 17.7211.82
Ensemble of 10 of our models 19.2210.54 17.25==0.66 15.59=0.47 14.87=0.89

SVHN

Model Percentage of incorrectly predicted test examples
for a given number of labeled samples
500 1000 2000

DGN [21] 36.02==0.10
Virtual Adversarial [22] 24.63
Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.61x0.24

Our model 18.44 == 4.8 3.11 1.3 6.16 = 0.98
Ensemble of 10 of our models 5.88 = 1.0

(Salimans et al 2016)

(Goodfellow 2017)
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Next Video Frame Prediction

Ground Truth

What happens next?

(Lotter et al 2016)



Next Video Frame Prediction

Ground Truth MSE Adversarial

(Lotter et al 2016)
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ocenerative models?

Simulated environments and training data
Missing data
e Semi-supervised learning

Multiple correct answers
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(Goodfellow 2017)



x = + Generative Image Manipulation

youtube
(Zhu et al., 2016)

(Goodfellow 2017)


https://www.youtube.com/watch?v=9c4z6YsBGQ0

Introspective Adversarial

Networks

Ly ral Ph o tditor ww i-

youtube

(Brock et al., 2016)


https://www.youtube.com/watch?v=FDELBFSeqQs

Image to Image 1Translation

=
~—
=
ho
-
)
o
i
O

Labels to Street Scene

output

iInput

Aeilto Map

output

inpuf

(Goodfellow 2017)

(Isola et al., 2016)



Unsupervised Image-to-Image ITranslation

Day to night

(Liu et al., 2017)



CycleGAN

(Zhu et al., 2017)

(Goodfellow 2017)



This bird has a
yellow belly and

tarsus, grey back,
wings, and brown

throat, nape with a
black face

(Zhang et al., 2016)

(Goodfellow 2017)



What can you do with

ocenerative models?

Simulated environments and training data
Missing data

e Semi-supervised learning

Multiple correct answers

Realistic generation tasks

Learn useful embeddings

(Goodfellow 2017)



Simulating particle physics
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What can you do with GANSs?

e Simulated environments and training data
e Missing data
e Semi-supervised learning
e Multiple correct answers
o Realistic generation tasks

e Simulation by prediction

(Goodfellow 2017)



Vector Space Arithmetic

. A

with glasses

Woman with Glasses

(Radford et al, 2015)

(Goodfellow 2017)



Learning interpretable latent codes /

controlling the generation process

InfoGAN (Chen et al 2016)



Plug and Play Generative
Networks

o New state of the art generative model (Nguyen et al
2016)

e Generates 227x227 realistic images from all

ImageNet classes

e Combines adversarial training, moment matching,

denoising autoencoders, and Langevin sampling

(Goodfellow 2017)



PPGN Samp

volcano

Neguyen et al 2016

(Goodfellow 2017)



PPGN for caption to image

oranges on a table next to a I|qu0r bottle

(Nguyen et al 2016)

(Goodfellow 2017)



Basic 1dea

e Langevin sampling repeatedly adds noise and
gradient of log p(z,y) to generate samples (Markov

chain)

e Denoising autoencoders estimate the required

oradient

e Use a special denoising autoencoder that has been
trained with multiple losses, including a GAN loss,

to obtain best results

(Goodfellow 2017)



ampling without class

oradient

’ > i
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LU L

epsilon1 = 0, epsilon2 = 1e-5
(Nguyen et al 2016)

(Goodfellow 2017)



(AN loss is a key ingredient

Raw data Reconstruction Reconstruction

by PPGN by PPGN

without GAN
Images from Nguyen et al 2016

First observed by Dosovitskiy et al 2016 (Goodtellen 2017



To be continued...

o Generative Models II will be taught by Aaron

Courville

(Goodfellow 2017)



For more information...

www.deeplearningbook.org

(Goodfellow 2017)


http://www.deeplearningbook.org

