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Machine Learning and Security

2

yy

hh

xx

W

w
yyh
1

h
1

x
1

x
1

h
2

h
2

x
2

x
2

Machine Learning for Security

Malware detection 
Intrusion detection 
…

Security against Machine Learning
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Password guessing 
Fake reviews 
…
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Security of Machine Learning
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An overview of a field
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This presentation summarizes the work of many people, not just 
my own / my collaborators 

Download the slides for this link to extensive references 

The presentation focuses on the concepts, not the history or the 
inventors

https://docs.google.com/document/d/1A62T1F5SNCURSQcLuZNPF3M5hDHm014TIH4MO0Bu6bs/edit?usp=sharing
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Machine Learning Pipeline
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Training data

Learning algorithm
Learned parameters

Test input

Test output
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Privacy of Training Data
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X ✓ X̂
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Defining (ε, δ)-Differential Privacy
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(Abadi 2017)
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Private Aggregation of Teacher Ensembles
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(Papernot et al 2016)
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Training Set Poisoning
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x
X ✓ ŷ
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ImageNet Poisoning
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(Koh and Liang 2017)
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Adversarial Examples
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Model Theft
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X ✓
x
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✓̂
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Model Theft++
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Deep Dive on Adversarial Examples
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...solving CAPTCHAS and 
reading addresses...

...recognizing objects 
and faces….

(Szegedy et al, 2014)

(Goodfellow et al, 2013)

(Taigmen et al, 2013)

(Goodfellow et al, 2013)

and other tasks...

Since 2013, deep neural networks have matched 
human performance at...
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Adversarial Examples
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Turning objects into airplanes
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Attacking a linear model
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Wrong almost everywhere
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Cross-model, cross-dataset transfer
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Transfer across learning algorithms
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(Papernot 2016)
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Transfer attack
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Train your 
own model

Target model with 
unknown weights, 
machine learning 

algorithm, training 
set; maybe non-
differentiable

Substitute model 
mimicking target 

model with known, 
differentiable function

Adversarial 
examples

Adversarial crafting 
against substitute

Deploy adversarial 
examples against the 
target; transferability 

property results in them 
succeeding
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Enhancing Transfer with Ensembles
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(Liu et al, 2016)
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Transfer to the Human Brain
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(Elsayed et al, 2018)
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Transfer to the Physical World
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(Kurakin et al, 2016)
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Adversarial Training
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Adversarial Training vs Certified Defenses
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Adversarial Training: 
Train on adversarial examples 
This minimizes a lower bound on the true worst-case error 
Achieves a high amount of (empirically tested) robustness on small to 
medium datasets 

Certified defenses 
Minimize an upper bound on true worst-case error 
Robustness is guaranteed, but amount of robustness is small 
Verification of models that weren’t trained to be easy to verify is hard
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Limitations of defenses
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Even certified defenses 
so far assume 
unrealistic threat 
model 

Typical model: attacker 
can change input within 
some norm ball 

Real attacks will be 
stranger, hard to 
characterize ahead of 
time (Brown et al., 2017)
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Clever Hans
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(“Clever Hans, 
Clever Algorithms,” 

Bob Sturm)
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Get involved!
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https://github.com/tensorflow/cleverhans
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Apply What You Have Learned
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Publishing an ML model or a prediction API? 
Is the training data sensitive? -> train with differential privacy 

Consider how an attacker could cause damage by fooling your 
model 
Current defenses are not practical 
Rely on situations with no incentive to cause harm / limited amount of 
potential harm


