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Summary
• Deep learning background

• Four articles:

• Spike-and-slab modeling

• Multi-prediction deep Boltzmann 
machines

• Maxout

• Street number transcription





Maximum likelihood 
estimation

• Pick parameters that maximize model’s 
probability of generating the observed 
data

• Given enough data, recovers the true 
model



Gradient descent







Deep learning

Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).
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Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.
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Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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Spike-and-Slab Sparse 
Coding

• Co-authors: Aaron Courville and Yoshua 
Bengio

• Motivated by Adam Coates’ work on 
feature learning and feature extraction

• Faster form of variational inference

• Component of a deep model



















Multi-Prediction deep 
Boltzmann machines

• Co-authors: Mehdi Mirza, Aaron 
Courville, Yoshua Bengio

• Simplified training procedure for deep 
Boltzmann machines

• Improved accuracy of approximate 
inference



Typical DBM Training

Salakhutdinov and Hinton, 2009

1. Greedy 
layerwise 

pretraining

2. Joint 
generative 

training

3. Discriminative 
fine-tuning





Simplify, simplify, 
simplify

Classic approach Goal

# models #layers+2 1

# criteria #layers+2 1

Classifier Extra classifier 
model

Same unified 
probabilistic 

model



Multi-Prediction 
Training

Randomly 
sample 

different 
inference 
problems

Backprop 
through the 
mean field 
inference 

graph



Benefits of Multi-
Prediction Training

• Learning rate doesn’t affect 
approximation accuracy 

• Training compensates for approximate 
inference 

• Similar to Stoyanov et al 2011



Multi-Inference Trick
Mean Field Iteration

Multi-Inference Iteration

+ =

Step 1 Step 2Previous State + Reconstruction

Step 1 Step 2Previous State



Results
Model

Test error 
with fine-

tuning

S&H 2009* 0.95

Centered 
DBM 1.22

MP-DBM 0.99

Multi-prediction, 2X hidden units, no fine-tuning*: 0.91
*Retrained using validation set.

Centering: Montavon and Müller, 2012



Mission Accomplished

Classic approach Goal

# models #layers+2 1

# criteria #layers+2 1

Classifier Extra classifier 
model

Same unified 
probabilistic 

model

✓
✓
✓



Maxout Networks
by Ian Goodfellow

Joint work with
David Warde-Farley    Mehdi Mirza    Aaron Courville    Yoshua Bengio

with acknowledgments to

Frédéric Bastien    Yann Dauphin    Pascal Lamblin



Traditional activation 
functions

Weight
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The vanishing gradient 
problem



Uh-oh



Maxout
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Maxout units
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Comparing maxout to 
rectifiers
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Effectiveness of pooling

Maxout Networks

from cross-channel pooling. Rectifier units do best
without cross-channel pooling but with the same num-
ber of filters, meaning that the size of the state and the
number of parameters must be about k times higher
for rectifiers to obtain generalization performance ap-
proaching that of maxout.
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Comparison of large rectifier networks to maxout
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Figure 6. We cross-validated the momentum and learn-
ing rate for four architectures of model: 1) Medium-sized
maxout network. 2) Rectifier network with cross-channel
pooling, and exactly the same number of parameters and
units as the maxout network. 3) Rectifier network without
cross-channel pooling, and the same number of units as
the maxout network (thus fewer parameters). 4) Rectifier
network without cross-channel pooling, but with k times
as many units as the maxout network. Because making
layer i have k times more outputs increases the number
of inputs to layer i + 1, this network has roughly k times
more parameters than the maxout network, and requires
significantly more memory and runtime. We sampled 10
learning rate and momentum schedules and random seeds
for dropout, then ran each configuration for all 4 architec-
tures. Each curve terminates after failing to improve the
validation error in the last 100 epochs.

7. Model averaging
Having demonstrated that maxout networks are e�ec-
tive models, we now analyze the reasons for their suc-
cess. We first identify reasons that maxout is highly
compatible with dropout’s approximate model averag-
ing technique.

The intuitive justification for averaging sub-models by
dividing the weights by 2 given by (Hinton et al., 2012)
is that this does exact model averaging for a single
layer model, softmax regression. To this characteriza-
tion, we add the observation that the model averaging
remains exact if the model is extended to multiple lin-
ear layers. While this has the same representational
power as a single layer, the expression of the weights
as a product of several matrices could have a di�er-
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Figure 7. The error rate of the prediction obtained by sam-
pling several sub-models and taking the geometric mean of
their predictions approaches the error rate of the predic-
tion made by dividing the weights by 2. However, the
divided weights still obtain the best test error, suggesting
that dropout is a good approximation to averaging over a
very large number of models. Note that the correspondence
is more clear in the case of maxout.

ent inductive bias. More importantly, it indicates that
dropout does exact model averaging in deeper archi-
tectures provided that they are locally linear among
the space of inputs to each layer that are visited by
applying di�erent dropout masks.

We argue that dropout training encourages maxout
units to have large linear regions around inputs that
appear in the training data. Because each sub-model
must make a good prediction of the output, each unit
should learn to have roughly the same activation re-
gardless of which inputs are dropped. In a maxout
network with arbitrarily selected parameters, varying
the dropout mask will often move the e�ective in-
puts far enough to escape the local region surround-
ing the clean inputs in which the hidden units are lin-
ear, i.e., changing the dropout mask could frequently
change which piece of the piecewise function an input
is mapped to. Maxout trained with dropout may have
the identity of the maximal filter in each unit change
relatively rarely as the dropout mask changes. Net-
works of linear operations and max(·) may learn to
exploit dropout’s approximate model averaging tech-
nique well.

Many popular activation functions have significant
curvature nearly everywhere. These observations sug-
gest that the approximate model averaging of dropout
will not be as accurate for networks incorporating such
activation functions. To test this, we compared the
best maxout model trained on MNIST with dropout
to a hyperbolic tangent network trained on MNIST



Applications of maxout

• Speech: Miao et al 2013, Cai et al 2013, Zhang et al 2014, Swietojanski et al 
2014

• Multiplayer game matchmaking: Laufer et al, 2013

• Text detection: Jaderberg et al 2014

• Text transcription: Alsharif and Pineau, 2013

• Simplifying optimization: Gulcehre 2013

• Recurrent networks: Pascanu 2014

• Whale call detection: Smirnov 2013

• Black-box classification: Xie et al, 2013



Street number 
transcription

• Co-authors: Yaroslav Bulatov, Julian Ibarz,  
Sacha Arnoud, Vinay Shet

• Use convolutional networks to read 
address numbers from Street View 
Images

• Automated transcription of over 100 
million real address numbers



Google Proprietary

243               43           143

Want
Neural net

Neural net Neural net



Google Proprietary

Architecture

Conv tower

full connections
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Input: pixels

1
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4

Length Digit 1 Digit 2 Digit 3

More 
digits 
...

Proposed architecture: 
● end-to-end learning 
● no explicit segmentation 
● integrated character recognition 
● no need for a baseline 
● no per-character GT required 
● output entire sequence at once

6 softmax: 
● 1 for length 
● 1 per character
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Training

Log likelihood:

× ×

3            7           0           0         ?             ?
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MAP sequence inference



Google Proprietary

Accuracy

Coverage@ 
human 
accuracy (98%)

Accuracy Per Character 
Accuracy

Per Character Accuracy 
(Prev. state of the Art)

Public SVHN 95.6% 96% 97.8% 97.7%

Private Dataset 89% 91%



Google Proprietary

Example failures



Google Proprietary

Effect of depth



Google Proprietary

Effect of # of parameters



Conclusion

• Unsupervised learning useful when very 
little labeled data available

• Generative models useful for missing 
value problems

• Implicit ensembles and/or lots of data are 
much more effective


