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Discriminative deep learning

* Recipe for success
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Discriminative deep learning

* Recipe for success:

Conv Conv Conv
3x3+1(S) 5x5+1(S) 1x1+1(S)

Conv

1x1+1(S)

Conv Conv MaxPool
I1x1+1(S) 1x1+1(S) 3x3+1(S)

Google's winning entry
into the ImageNet K DepthConcat
competition (with extra data).
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Discriminative deep learning

* Recipe for success:

- Gradient backpropagation.

- Dropout
- Activation functions:
e rectified linear
* Mmaxout
Google’s winning entry

into the ImageNet K
competition (with extra data).
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Generative modeling

* Have training examples X ~ Pdata(X )

* Want a model that can draw samples: X ~ Pmodel(X )

* Where Pmodel = Pdata
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X ~ ,Udata(X) X ~ ,UmodeI(X)
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Why generative models?

* Conditional generative models

- Speech synthesis: Text = Speech

- Machine Translation: French = English

e French: SI mon tonton tond ton tonton, ton tonton sera tondu.
* English: If my uncle shaves your uncle, your uncle will be shaved

- Image = Image segmentation

e Environment simulator

- Reinforcement learning

- Planning

* |Leverage unlabeled data
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Maximum likelihood: the dominant approach

* ML objective function

1 m |
0 max - ;:1 ogp|x\;0
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Undirected graphical models

* State-of-the-art general purpose undirected
oraphical model: Deep Boltzmann machines

* Several "hidden layers™ h L0 O +o0 OO
1 (2) oo OO
p(h,x) = Ep(haﬂf) RR
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Undirected graphical models: disadvantage

* ML Learning requires that we draw samples:

OO - OO

1 B0 0O e OO

log » p(h,x) —log Z(6)

* Common way to do this is via MCMC (Gibbs sampling).
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Boltzmann Machines: disadvantage

* Model is badly parameterized for learning high
quality samples.

¢ Why!

- Learning leads to large values of the model parameters.

» Large valued parameters = peaky distribution.
- Large valued parameters means slow mixing of sampler.

- Slow mixing means that the gradient updates are
correlated = leads to divergence of learning.
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Boltzmann Machines: disadvantage

* Model is badly parameterized for learning high
quality samples.

* Why poor mixing!
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MNIST dataset 1st layer features (RBM)
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Directed graphical models

p(z, h) = p(z | AD)p(RY | A2)) . p(hE=D | BE)p(R )

dcéi log p(x) = (1 ) dgéip(a?)

* [wo problems:

|. Summation over exponentially many states in h

2. Posterior inference, i.e. calculating p(h | X), is intractable.
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Directed graphical models: New approaches

 [he Variational Autoencoder model:

- Kingma and Welling, Auto-Encoding Variational Bayes, International
Conference on Learning Representations (ICLR) 2014.

- Rezende, Mohamed and Wierstra, Stochastic back-propagation and
variational inference in deep latent Gaussian models. ArXiv.

- Use a reparametrization that allows them to train very efficiently
with gradient backpropagation.
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Generative stochastic networks

* (eneral strategy:

Do not write a formula for p(x),

just learn to sample incrementally.

* Main issue: Subject to some of the same constraints

on mixing as undirected graphical models.
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Generative adversarial networks

* Don't write a formula for p(x), just learn to sample
directly.

e No summation over all states.

* How! By playing a game.
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Two-player zero-sum game

* Your winnings + your opponents winnings = 0

* Minimax theorem: a rational strategy exists for all
such finite games
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Two-player zero-sum game

* Strategy: specification of which moves you make in which
circumstances.

* Equilibrium: each player's strategy Is the best possible for
their opponent’s strategy.

Your opponent
* Example: Rock-paper-scissors: Rock  Paper Scissors

- Mixed strategy equilibrium 0 N |

Rock

- Choose you action at random
| 0 - |

You

Scissors Paper
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Generative modeling with game theory?

* (Can we design a game with a mixed-strategy
equilibrium that forces one player to learn to generate
from the data distribution?
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Adversarial nets framework

* A game between two players:

|. Discriminator D
2. Generator GG

e D tries to discriminate between:

- A sample from the data distribution.
- And a sample from the generator G.

* G tries to "trick” D by generating samples that are
hard for D to distinguish from data.
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Adversarial nets framework

D tries to

D tries to

output 1

Differentiable
function D

X sampled
from data
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Differentiable
function D

X sampled
from model

Differentiable
function G

Input noise
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Zero-sum game

* Minimax objective function:

m&n mgx V(D,G) = Fo o pa () log D(x)] + Lz~p. (2) log(1 — D(G(2)))]

* In practice, to estimate G we use:

2 npa (2)[l0g D(G(2))]

max It
G

Why! Stronger gradient for G when D is very good.
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Discriminator strategy

» Optimal strategy for any Pmodel(X) is always

pdata(x)

D<$> N pdata(m) - pmodel(m)
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Learning process

pp(data) Data distribution
l / Model distribution
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Learning process

pp(data) Data distribution
l / Model distribution
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Learning process

pp(data) Data distribution
l / Model distribution

"""""""""""""""""""

4 .
° 4 oy “
R PP
v
x

T 7L T

Poorly fit model After updating D After updating G

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model After updating D After updating G =~ Mixed strategy
equilibrium
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Theoretical properties

min max V(D, G) = Exwpy, (2)[108 D(@)] + Eznp, () [log(1 — D(G(2)))]

* Theoretical properties (assuming infinite data, infinite
model capacity, direct updating of generator’s
distribution):

- Unique global optimum.
- Optimum corresponds to data distribution.

- Convergence to optimum guaranteed.
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Quantitative likelihood results

* Parzen window-based log-likelihood estimates.

ensr

'y estimate with Gaussian kernels centered on

the sa

mples drawn from the model.

Model MNIST TED

DBN [3] 138 £ 2 1909 + 66
Stacked CAE [3] | 121 £ 1.6 | 2110 £+ 50
Deep GSN [6] 214+ 1.1 1890 £ 29
Adversarial nets 225+ 2 | 2057 + 26
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Visualization of model samples

2131712199 TR
o |
/| 110] é]o] 0N
i\ al ’
oltlali|2]2f b g by
e oy = L=
61812|0| 4|5 Breve. Hf-l

MNIST TFD

rs : & ) st ; J' . T" 2 & '“
e -«t;‘ M ' 23 ‘ , .,"’...f .( ) e 2
8 R 3 : : 3 F 'ﬂ
» . A g g
A * e al A.W}F 3 g\' .
. :"7'-‘9 T <P ‘
| g » - PV AN -
A " "< o%.: N L I LS Ny X Tl
B T0V W gk Y | PO, §s ol |
H oy P B | ' 3 ) '
: . I Y ‘ | | \'.'\ g v 1

CIFAR-10 (fully connected) CIFAR- 10 (convolutional
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Learned 2-D manifold of MNIST
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Visualizing trajectories
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Visualization of model trajectories
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Visualization of model trajectories
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Extensions

e Conditional model:

- Learn p(x 1 y)

- Discriminator is trained on (X,y) pairs

- (enerator net gets y and Z as input

- Useful for: Translation, speech synth, image
segmentation.
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Extensions

e |nference net:

- Learn a network to model p(z | x)

- Infinrte training set!
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Extensions

* Jake advantage of

using the generator.

* Train G on a large,

nigh amounts of unlabeled data

|~

unlabeled dataset

* Train G to learn p(z|x) on an infinite training set

* Add a layer on top of GG, train on a small labeled

training set
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Extensions

* Jake advantage of unlabeled data using the
discriminator

* Train G and D on a large amount of unlabeled data

- Replace the last layer of D

- Continue training D on a small amount of labeled
data
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Thank You.

Questions?



