Design Philosophy of

Optimization for Deep
Learning

Ian Goodfellow
Senior Research Scientist

Stanford, California
2016-03-07

Google

High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther than a lot of

optimization algorithm redesign

Terminology

Cost function
Gradient
Hessian
Curvature

Critical points: minima, maxima, saddle points

Derivatives and Second Derivatives

Cost function Gradient Hessian
J(0) g =VeJ(0) H
. — O . 0 .
gi = 55:J(0) Hij= g3
. ONegative curvature No curvature Positive curvature
1.5} 1t :
1.0} . -
0.5} 1t .
0.0 . - -
-0.5} 1t :
-1.0} 1t
-1.5} 1t :
-2.0 '

-1.0-05 00 05 1.0-1.0-0.5 00 05 1.0-1.0-0.5 0.0 05 10

Critical Points

Minimum Maximum Saddle point
2.0 0.0
[1.5 10.5
[1.0 1.0

[1.5
2.0
1.0
0.5
-1.0
05 0.0
0.0 -0.5
0.5
1.91.0

1.01.0
Some positive

and some negative

All positive eigenvalues All negative eigenvalues

High-Level Lessons

o Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther than a lot of

optimization algorithm redesign

Approximate minimization

This local minimum
performs nearly as well as
the global one,

so 1t 1s an acceptable
halting point.

N\

B |Ideally, we would like
™ |to arrive at the clobal
minimum, but this

might not be possible. . o
This local minimum performs

poorly, and should be avoided.

www.deeplearningbook.org Deep Learning, Goodtellow, Bengio, and Courville 2016

http://www.deeplearningbook.org

No Critical Point

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

—2 0.1
—o0 0 50 100 150 200 250 0 o0 100 150 200 250

Training time (epochs) Training time (epochs)

(Gradient norm
O N R OO O N R O
[l e——

Classification error rate

www.deeplearningbook.org Deep Learning, Goodtellow, Bengio, and Courville 2016

http://www.deeplearningbook.org

High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are

successiul

e A little model redesign goes farther than a lot of

optimization algorithm redesign

The old myth of SGD tailure

e SGD usually moves downhill

e SGD eventually encounters a critical point
e Usually this is a minimum

e However, it is a local minimum

e The cost function is high at this point

e Some global minimum is the real target, and has much lower

CcOSst

The new myth of SGD tailure

e SGD usually moves downhill
e SGD eventually encounters a critical point
e Usually this is a saddle point

e SGD is stuck, and the main reason it is stuck is that

it fails to exploit negative curvature

Gradient descent flees saddle points

d Eigenvalue response at ¢t =1
30 ' i ' r

500 =—g—H(61)-6(0) |
—> ol
0(t) = 60) — QN (HQTg -+
where o/
;o 1 —exp(—A?) |

A(t) =) ‘ S : : :

A

Saddle points are a problem.... for Newton’s method, not SGD.

“Qualitatively Characterizing Neural Network

Optimization Problems,”
Goodfellow, Vinvals and Saxe, ICLR 2015

(Cartoon of
Saxe et al 2013’s
worldview)

2.5

‘| Interpolation plot
| Learning curve

“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015

J(V)

10

Linear interpolation of an LSTM on Penn Treebank

*—xJ(6) train
—x J(0) validation

0.2 0.4 0.6 0.8 1.0

“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015

o0
300, ,c°

?(0\

s
TP
TS

7

Y7

QL /4
/77

/ /{/////
iy 1/ /

i/

20
Residqua 40 60 100

Adversaria
RelLUs

Factored Linear

“Qualitatively Characterizing Neural Network
Optimization Problems,”
Goodfellow, Vinyals and Saxe, ICLR 2015

High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther
than a lot of optimization algorithm
redesign

1Two Extreme Positions

e Convex optimization: Design model within a set of
formal constraints, such that eflicient and perfect

optimization is guaranteed

e Fully general optimization: Write down whatever

model seems most intuitive, hope you can optimize it

Modern Deep Nets are very

(Piece-Wise) Linear

Rectified Linear Unit Maxout
| | : -

| | out out o_ut

A B A

I I hid ‘Q ‘Q
|

| | inp inp inp

| |

Carefully tuned sigmoid LSTM (addition is linear)

Batch Normalization

e Consider a very deep net with
e No nonlinearities
e Only one unit per layer

e yv = abcdef...x

Beforgid§GD step

npu en Layer 1 Hidden Layer 4
O o o
° . .
. ! o © ‘
® o o
“ N "“ (o] .. o ‘ ’.
; 0 8 o
08 Sowocs 0 o B2 ooooo
Hidden Layer 1 Hidden Layer 4
o © o o o
(o)
) S o /0’
o (@)
: Qo 00.. 8 &

Atter SGD step

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015

Batch Normalization
= XW

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015

Before SGD step

Input Hidden Layer 1 Hidden Layer 4
) (o]
o ° . :
O
o : o O ’
° o o o
"“ ¢ o. ° 3 .
° 6 8
o o S <
a0 O O '.m‘.“
Input Hidden Layer 1 Hidden Layer 4
® o
o © o o o
(o) (®)
£ . :
° ° o0
pooe™ 8| | §
o g 3
ooo ©
aoe8° o ® © oc00 ccuw

After SGD step

“Batch Normalization: Accelerating Deep

Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015

0.8

— = = Inception
----- BN-Baseline
------- BN—-x5
BN-x30
4+ BN-x5-Sigmoid
¢ Steps to match Inception

15M 20M 25M 30M

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015

Net2Net

e Transferring knowledge between neural nets is hard

e Restrict the model architecture to make it easy

Traditional Workflow

Initial Design Rebuild the Model
@
< <

Training :> Training

S em

Net2Net Workflow

Initial Design Reuse the Model

8 ﬁl\j
ﬁzi Net2Net Operator
<
Training

<
ﬁ:i\:I Training

<

=

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,
and Shlens, submitted to ICLR 2016

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,
and Shlens, submitted to ICLR 2016

A Deeper Model Contains

Original Model Layers that Initialized as Identity Mapping Initialized Layers

Identity Mapping

1.0
. -
0.9} -
[
n
(@)
£ 0.8}
c
©
|_
C
o
>
O
C 0.7
>
O
O
< /
/
/
I
0.6f
! — Net2DeeperNet
’ L] " . [. L] [
I - - Training from random initialization
| x—x Precision of Teacher Model
9-3.0 0.2 0.4 0.6 0.8 1.0

Number of Mini-batches passed le7

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,
and Shlens, submitted to ICLR 2016

0.80 | | | .

0.75} N -
P ~
7
/7
7
7
40_)1 7
»n 0.70F 7 .
- /
@)
S /
© /
O /
© /
= 0.65F / -
C /
O /
% /
© /
8 |
o 0.60F I -
< l
|
|
|
0.55} :
' ” — Net2DeeperNet
! - - Training from random initialization
| . .
x—x Precision of Teacher Model
0.5]]]]
(8).0 0.2 0.4 0.6 0.8 1.0
Number of Mini-batches passed le7/

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,
and Shlens, submitted to ICLR 2016

Residual Nets

e Similar to much older skip

input to output while retaining
depth

l"* connections strategies
3x3, 64 I
relu e Add much shorter paths from

elu e Multi-step program initialized to

sequence of no-ops
He et al, 2015

High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther than a lot of

optimization algorithm redesign

CHAPTER 1. INTRODUCTION

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very

complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.

Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that we
are able to observe. Then a series of hidden layers extracts increasingly abstract features
from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

Deep Learning

Goodfellow, Bengio,

and Courville

www.deeplearningbook.org

In preparation for MIT Press

http://www.deeplearningbook.org

