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High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther than a lot of

optimization algorithm redesign



Terminology

Cost function
Gradient
Hessian
Curvature

Critical points: minima, maxima, saddle points



Derivatives and Second Derivatives
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Critical Points
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o Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther than a lot of

optimization algorithm redesign



Approximate minimization

This local minimum
performs nearly as well as
the global one,

so 1t 1s an acceptable
halting point.

N\

B |Ideally, we would like
™ |to arrive at the clobal
minimum, but this

might not be possible. . o
This local minimum performs

poorly, and should be avoided.

www.deeplearningbook.org Deep Learning, Goodtellow, Bengio, and Courville 2016



http://www.deeplearningbook.org

No Critical Point
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High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are

successiul

e A little model redesign goes farther than a lot of

optimization algorithm redesign



The old myth of SGD tailure

e SGD usually moves downhill

e SGD eventually encounters a critical point
e Usually this is a minimum

e However, it is a local minimum

e The cost function is high at this point

e Some global minimum is the real target, and has much lower

CcOSst



The new myth of SGD tailure

e SGD usually moves downhill
e SGD eventually encounters a critical point
e Usually this is a saddle point

e SGD is stuck, and the main reason it is stuck is that

it fails to exploit negative curvature



Gradient descent flees saddle points
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Saddle points are a problem.... for Newton’s method, not SGD.

“Qualitatively Characterizing Neural Network

Optimization Problems,”
Goodfellow, Vinvals and Saxe, ICLR 2015



(Cartoon of
Saxe et al 2013’s
worldview)
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‘| Interpolation plot
| Learning curve

“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015
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Linear interpolation of an LSTM on Penn Treebank
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“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015
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“Qualitatively Characterizing Neural Network
Optimization Problems,”
Goodfellow, Vinyals and Saxe, ICLR 2015



High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther
than a lot of optimization algorithm
redesign



1Two Extreme Positions

e Convex optimization: Design model within a set of
formal constraints, such that eflicient and perfect

optimization is guaranteed

e Fully general optimization: Write down whatever

model seems most intuitive, hope you can optimize it



Modern Deep Nets are very

(Piece-Wise) Linear

Rectified Linear Unit Maxout
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Carefully tuned sigmoid LSTM (addition is linear)




Batch Normalization

e Consider a very deep net with
e No nonlinearities
e Only one unit per layer

e yv = abcdef...x



Beforgid§GD step

npu en Layer 1 Hidden Layer 4
O o o
° . .
. ! o © ‘
® o o
“ N "“ (o] .. o ‘ ’.
; 0 8 o
08 Sowocs 0 o B2 ooooo
Hidden Layer 1 Hidden Layer 4
o © o o o
(o)
) S o /0’
o (@)
: Qo 00.. 8 &

Atter SGD step

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015



Batch Normalization
= XW

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015



Before SGD step
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“Batch Normalization: Accelerating Deep

Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015
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“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal

Covariate Shift,” Ioffe and Szegedy 2015



Net2Net

e Transferring knowledge between neural nets is hard

e Restrict the model architecture to make it easy



Traditional Workflow

Initial Design Rebuild the Model
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“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,
and Shlens, submitted to ICLR 2016



“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,
and Shlens, submitted to ICLR 2016



A Deeper Model Contains

Original Model Layers that Initialized as Identity Mapping Initialized Layers

Identity Mapping
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Residual Nets

e Similar to much older skip

input to output while retaining
depth

l"* connections strategies
3x3, 64 I
relu e Add much shorter paths from

elu e Multi-step program initialized to

sequence of no-ops
He et al, 2015



High-Level Lessons

e Strive for success, not perfection

e Simple optimization methods are successful

e A little model redesign goes farther than a lot of

optimization algorithm redesign



CHAPTER 1. INTRODUCTION

Output
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1st hidden layer
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Visible layer
(input pixels)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very

complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.

Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that we
are able to observe. Then a series of hidden layers extracts increasingly abstract features
from the image. These layers are called “hidden” because their values are not given in
the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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