
Design Philosophy of
Optimization for Deep

Learning
Ian Goodfellow

Senior Research Scientist

Stanford, California
2016-03-07

High-Level Lessons

• Strive for success, not perfection

• Simple optimization methods are successful

• A little model redesign goes farther than a lot of
optimization algorithm redesign

Terminology
• Cost function

• Gradient

• Hessian

• Curvature

• Critical points: minima, maxima, saddle points

Derivatives and Second Derivatives

Critical Points

All positive eigenvalues All negative eigenvalues Some positive
and some negative

High-Level Lessons

• Strive for success, not perfection

• Simple optimization methods are successful

• A little model redesign goes farther than a lot of
optimization algorithm redesign

x

f(
x
)

Ideally, we would like
to arrive at the global
 minimum, but this
might not be possible.

This local minimum
performs nearly as well as
the global one,
so it is an acceptable
halting point.

This local minimum performs
poorly, and should be avoided.

Approximate minimization

Deep Learning, Goodfellow, Bengio, and Courville 2016www.deeplearningbook.org

http://www.deeplearningbook.org

No Critical Point

�50 0 50 100 150 200 250

Training time (epochs)

�2

0

2

4

6

8

10

12

14

16
G

ra
d
ie

n
t

n
o
rm

0 50 100 150 200 250

Training time (epochs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
la

ss
ifi

ca
ti
o
n

er
ro

r
ra

te

Deep Learning, Goodfellow, Bengio, and Courville 2016www.deeplearningbook.org

http://www.deeplearningbook.org

High-Level Lessons

• Strive for success, not perfection

• Simple optimization methods are
successful

• A little model redesign goes farther than a lot of
optimization algorithm redesign

The old myth of SGD failure
• SGD usually moves downhill

• SGD eventually encounters a critical point

• Usually this is a minimum

• However, it is a local minimum

• The cost function is high at this point

• Some global minimum is the real target, and has much lower
cost

The new myth of SGD failure

• SGD usually moves downhill

• SGD eventually encounters a critical point

• Usually this is a saddle point

• SGD is stuck, and the main reason it is stuck is that
it fails to exploit negative curvature

Gradient descent flees saddle points

“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015

Saddle points are a problem…. for Newton’s method, not SGD.

“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015

“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015

“Qualitatively Characterizing Neural Network
Optimization Problems,”

Goodfellow, Vinyals and Saxe, ICLR 2015

High-Level Lessons

• Strive for success, not perfection

• Simple optimization methods are successful

• A little model redesign goes farther
than a lot of optimization algorithm
redesign

Two Extreme Positions

• Convex optimization: Design model within a set of
formal constraints, such that efficient and perfect
optimization is guaranteed

• Fully general optimization: Write down whatever
model seems most intuitive, hope you can optimize it

Google Proprietary

Modern deep nets are very (piecewise) linear

Rectified linear unit

Carefully tuned sigmoid

Maxout

LSTM

Modern Deep Nets are very
(Piece-Wise) Linear

Rectified Linear Unit Maxout

Carefully tuned sigmoid LSTM (addition is linear)

Batch Normalization

• Consider a very deep net with

• No nonlinearities

• Only one unit per layer

• y = abcdef…x

Before SGD step

After SGD step
“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015

Batch Normalization

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015

Z =XW

˜Z =Z � 1

m

mX

i=1

Zi,:

ˆZ =

˜Zq
✏+ 1

m

Pm
i=1

˜Zi,:

H =max{0,� ˆZ + �}

2

Before SGD step

After SGD step
“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015

5M 10M 15M 20M 25M 30M
0.4

0.5

0.6

0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%
BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:
Inception: the network described at the beginning of

Section 4.2, trained with the initial learning rate of 0.0015.
BN-Baseline: Same as Inception with Batch Normal-

ization before each nonlinearity.
BN-x5: Inception with Batch Normalization and the

modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.
BN-x30: Like BN-x5, but with the initial learning rate

0.045 (30 times that of Inception).
BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-

linearity g(t) = 1
1+exp(−x) instead of ReLU. We also at-

tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.
In Figure 2, we show the validation accuracy of the

networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.
By only using Batch Normalization (BN-Baseline), we

match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.
We also verified that the reduction in internal covari-

ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).
For our ensemble, we used 6 networks. Each was based

on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).
We demonstrate in Fig. 4 that batch normalization al-

lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-

7

“Batch Normalization: Accelerating Deep
Network Training by Reducing Internal
Covariate Shift,” Ioffe and Szegedy 2015

Net2Net

• Transferring knowledge between neural nets is hard

• Restrict the model architecture to make it easy

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,

and Shlens, submitted to ICLR 2016

Under review as a conference paper at ICLR 2016

Figure 1: Comparison between a traditional workflow and the Net2Net Workflow; Net2Net
reuses information from an already trained model to speed up the training of a new model.
model for a shorter period of time beginning from the function learned by the previous best model.
Fig 1 demonstrates the difference of this approach from traditional one.

More ambitiously, real machine learning systems will eventually become lifelong learning sys-
tems (Thrun, 1995; Silver et al., 2013; Mitchell et al., 2015). These machine learning systems need
to continue to function for long periods of time and continually experience new training examples
as these examples become available. We can think of a lifelong learning system as experiencing a
continually growing training set. The optimal model complexity changes as training set size changes
over time. Initially, a small model may be preferred, in order to prevent overfitting and to reduce
the computational cost of using the model. Later, a large model may be necessary to fully utilize
the large dataset. Net2Net operations allow us to smoothly instantiate a significantly larger model
and immediately begin using it in our lifelong learning system, rather than needing to spend weeks
or months re-train a larger model from scratch on the latest, largest version of the training set.

2 METHODOLOGY
In this section, we describe our new Net2Net operations and how we applied them on real deep
neural nets.

2.1 FEATURE PREDICTION
We briefly experimented with a method that proved not to offer a significant advantage: training a
large student network beginning from a random initialization, and introducing a set of extra “teacher
prediction” layers into the student network. Specifically, several convolutional hidden layers of the
student network were provided as input to new, learned, convolutional layers. The cost function
was modified to include terms encouraging the output of these auxiliary layers to be close to a
corresponding layer in the teacher network. In other words, the student is trained to use each of its
hidden layers to predict the values of the hidden layers in the teacher.

The goal was that the teacher would provide a good internal representation for the task that the stu-
dent could quickly copy and then begin to refine. The approach resembles the FitNets (Romero et al.,
2014) strategy for training very thin networks of moderate depth. Unfortunately, we did not find that
this method offered any compelling speedup or other advantage relative to the baseline approach.
This may be because our baseline was very strong, based on training with batch normalization (Ioffe
& Szegedy, 2015). Mahayri et al. (2015) independently observed that the benefits of the FitNets
training strategy were eliminated after changing the model to use batch normalization.

The FitNets-style approach to Net2Net learning is very general, in the sense that, if successful, it
would allow any architecture of student network to learn from any architecture of teacher network.
Though we were not able to make this general approach work, we encourage other researchers to
attempt to design fully general Net2Net strategies in the future. We instead turned to different
Net2Net strategies that were limited in scope but more effective.

2.2 FUNCTION-PRESERVING INITIALIZATIONS
We introduce two effective Net2Net strategies. Both are based on initializing the student network
to represent the same function as the teacher, then continuing to train the student network by normal
means. Specifically, suppose that a teacher network is represented by a function y = f(x;✓) where

2

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,

and Shlens, submitted to ICLR 2016

Under review as a conference paper at ICLR 2016

y

h[1] h[2]

x[1] x[2]

a

b c

d

e f

y

h[1] h[2]

x[1] x[2]

a

b c
d

e f/2

h[3]
c

d

f/2

Figure 2: The Net2WiderNet transformation. In this example, the teacher network has an input
layer with two inputs x[1] and x[2], a hidden layer with two rectified linear hidden units h[1] and h[2],
and an output y. We use the Net2WiderNet operator to create a student network that represents
the same function as the teacher network. The student network is larger because we replicate the
h[2] unit of the teacher. The labels on the edges indicate the value of the associated weights. To
replicate the h[2] unit, we copy its weights c and d to the new h[3] unit. The weight f , going out
of h[2], must be copied to also go out of h[3]. This outgoing weight must also be divided by 2 to
compensate for the replication of h[2]. This is a simple example intended to illustrate the conceptual
idea. For a practical application, we would simultaneously replicate many randomly chosen units,
and we would add a small amount of noise to break symmetry after the replication. We also typically
widen many layers rather than just one layer, by recursively applying the Net2WiderNet operator.

layer i with a layer that has q outputs, with q > n. We will introduce a random mapping function
g : {1, 2, · · · , q} ! {1, 2, · · · , n}, that satisfies

g(j) =

⇢
j j n

random sample from {1, 2, · · ·n} j > n

We introduce a new weight matrix U

(i) and U

(i+1) representing the weights for these layers in the
new student network. Then the new weights are given by

U

(i)
k,j

= W

(i)
k,g(j), U

(i+1)
j,h

=
1

|{x|g(x) = g(j)}|W
(i+1)
g(j),h.

Here, the first n columns of W (i) are copied directly into U

(i). Columns n+1 through q of U (i) are
created by choosing a random as defined in g. The random selection is performed with replacement,
so each column of W (i) is copied potentially many times. For weights in U

(i+1), we must account
for the replication by dividing the weight by replication factor given by 1

|{x|g(x)=g(j)}| , so all the
units have the exactly the same value as the unit in the original net.

This description can be generalized to making multiple layers wider, with the layers composed as
described by an arbitrary directed acyclic computation graph. This general procedure is illustrated
by Fig. 2. So far we have only discussed the use of a single random mapping function to expand
one layer. We can in fact introduce a random mapping function g

(i) for every non-output layer.
Importantly, these g

(i) are subject to some constraints as defined by the computation graph. Care
needs to be taken to ensure that the remapping functions do in fact result in function preservation.

To explain, we provide examples of two computational graph structures that impose specific con-
straints on the random remapping functions.

One example is the layer structure used by batch normalization (Ioffe & Szegedy, 2015). The
layer involves both a standard linear transformation, but also involves elementwise multiplication
by learned parameters that allow the layer to represent any range of outputs despite the normaliza-
tion operation. The random remapping for the multiplication parameters must match the random
remapping for the weight matrix. Otherwise we could generate a new unit that uses the weight
vector for pre-existing unit i but is scaled by the multiplication parameter for unit j. The new unit
would not implement the same function as the old unit i or as the old unit j.

4

Under review as a conference paper at ICLR 2016

Figure 3: The Net2DeeperNet Transformation
Another example is concatenation. If we concatenate the output of layer 1 and layer 2, then pass this
concatenated output to layer 3, the remapping function for layer 3 needs to take the concatenation
into account. The width of the output of layer 1 will determine the offset of the coordinates of units
originating in layer 2.

To make Net2WiderNet a fully general algorithm, we would need a remapping inference algo-
rithm that makes a forward pass through the graph, querying each operation in the graph about how
to make the remapping functions consistent. For our experiments, we manually designed all of the
inference necessary rules for the Inception network, which also works for most feed forward net-
work. This is similar to the existing shape inference functionality that allows us to predict the shape
of any tensor in the computational graph by making a forward pass through the graph, beginning
with input tensors of known shape.

After we get the random mapping, we can copy the weight over and divide by the replication factor,
which is formally given by the following equation.

U

(i)
k,j

=
1

|{x|g(i�1)(x) = g

(i�1)(k)}|
W

(i)
g

(i�1)(k),g(i)(j)

It is essential that each unit be replicated at least once, hence the constraint that the resulting layer
be wider. This operator can be applied arbitrarily many times; we can expand only one layer of the
network, or we can expand all non-output layers.

In the setting where several units need to share the same weights, for example convolution opera-
tions. We can add such constraint to the random mapping generation, such that source of weight is
consistent. This corresponds to make a random mapping on the channel level, instead of unit level,
the rest procedure remains the same.

When training with certain forms of randomization on the widened layer, such as dropout (Srivastava
et al., 2014), it is acceptable to use perfectly transformation preserving Net2WiderNet, as we have
described so far. When using a training algorithm that does not use randomization to encourage
identical units to learn different functions, one should add a small amount of noise to all but the first
copy of each column of weights. This results in the student network representing only approximately
the same function as the teacher, but this approximation is necessary to ensure that the student can
learn to use its full capacity when training resumes.

2.4 NET2DEEPERNET
We also introduce a second function-preserving transformation, Net2DeeperNet. This allows us
to transform an existing net into a deeper one. Specifically, the Net2DeeperNet replaces a layer
h

(i) = �(h(i�1)>
W

(i)) with two layers h(i) = �

�
U

(i)>
�

�
W

(i)>
h

(i�1)
��

. The new matrix U is
initialized to an identity matrix, but remains free to learn to take on any value later. This operation
is only applicable when � is chosen such that �(I�(v)) = �(v) for all vectors v. This property
holds for the rectified linear activation. To obtain Net2DeeperNet for maxout units, one must
use a matrix that is similar to identity, but with replicated columns. Unfortunately, for some popular
activation functions, such as the logistic sigmoid, it is not possible to insert a layer of the same
type that represents an identity function over the required domain. When we apply it to convolution
networks, we can simply set the convolution kernels to be identity filters.

In some cases, to build an identity layer requires additional work. For example, when using batch
normalization, we must set the output scale and output bias of the normalization layer to undo
the normalization of the layer’s statistics. This requires running forward propagation through the
network on training data in order to estimate the activation statistics.

The approach we take is a specific case of a more general approach, that is to build a multiple layer
network that factorizes the original layer. Making a deeper but equivalent representation. However it
is hard to do general factorization of layers which non-linear transformation units, such as rectified

5

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,

and Shlens, submitted to ICLR 2016

Under review as a conference paper at ICLR 2016

(a) Training Accuracy of Different Methods

(b) Validation Accuracy of Different Methods

Figure 5: Comparison of methods of training a deeper model

inception model for reference, which should be easier to train than these larger models. We can find
that the models initialized with Net2Net operations converge even faster than the standard model.
This example really demonstrate the advantage of Net2Net approach which helps us to explore
the design space faster and advance the results in deep learning.

4 DISCUSSION
Our Net2Net operators have demonstrated that it is possible to rapidly transfer knowledge from a
small neural network to a significantly larger neural network under some architectural constraints.
We have demonstrated that we can train larger neural networks to improve performance on ImageNet
recognition using this approach. Net2Netmay also now be used as a technique for exploring model
families more rapidly, reducing the amount of time needed for typical machine learning workflows.
We hope that future research will uncover new ways of transferring knowledge between neural net-
works. In particular, we hope future research will reveal more general knowledge transfer methods

8

Under review as a conference paper at ICLR 2016

(a) Training Accuracy of Different Methods

(b) Validation Accuracy of Different Methods

Figure 5: Comparison of methods of training a deeper model

inception model for reference, which should be easier to train than these larger models. We can find
that the models initialized with Net2Net operations converge even faster than the standard model.
This example really demonstrate the advantage of Net2Net approach which helps us to explore
the design space faster and advance the results in deep learning.

4 DISCUSSION
Our Net2Net operators have demonstrated that it is possible to rapidly transfer knowledge from a
small neural network to a significantly larger neural network under some architectural constraints.
We have demonstrated that we can train larger neural networks to improve performance on ImageNet
recognition using this approach. Net2Netmay also now be used as a technique for exploring model
families more rapidly, reducing the amount of time needed for typical machine learning workflows.
We hope that future research will uncover new ways of transferring knowledge between neural net-
works. In particular, we hope future research will reveal more general knowledge transfer methods

8

“Net2Net: Accelerating Learning via
Knowledge Transfer.” Chen, Goodfellow,

and Shlens, submitted to ICLR 2016

Residual Nets
• Similar to much older skip

connections strategies

• Add much shorter paths from
input to output while retaining
depth

• Multi-step program initialized to
sequence of no-ops

He et al, 2015

High-Level Lessons

• Strive for success, not perfection

• Simple optimization methods are successful

• A little model redesign goes farther than a lot of
optimization algorithm redesign

Deep Learning
Goodfellow, Bengio,

and Courville

www.deeplearningbook.org

In preparation for MIT Press

http://www.deeplearningbook.org

