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Generative Modeling

• Have training examples: 

• Want a model that can draw samples:  

• Want

x ⇠ ptrain(x)

x ⇠ p
model

(x)

p
model

(x) = p
data

(x)

(Images from 
Toronto Face 
Database)



Example Applications

• Image manipulation 

• Text to speech 

• Machine translation



Modeling Priorities
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Put high probability where there 
should be high probability

Put low probability where there 
should be low probability

(Deep Learning, 
Goodfellow, 
Bengio, and 

Courville 2016)



Generative Adversarial Networks
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(“Generative 
Adversarial Networks”, 
Goodfellow et al 2014)



Discriminator Strategy
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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Generator Transformation Videos

MNIST digit dataset Toronto Face Dataset (TFD)



Non-Convergence

(Alec Radford)



Laplacian Pyramid

(Denton+Chintala et al 2015)



LAPGAN Results
• 40% of samples mistaken by humans for real photographs 

(Denton+Chintala et al 2015)



DCGAN Results

(Radford et al 2015)



Arithmetic on Face SemanticsCHAPTER 15. REPRESENTATION LEARNING
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Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

features have in common is that one could imagine learning about each of them
without having to see all the configurations of all the others. Radford
et al. (2015) demonstrated that a generative model can learn a representation of
images of faces, with separate directions in representation space capturing different
underlying factors of variation. Fig. 15.9 demonstrates that one direction in
representation space corresponds to whether the person is male or female, while
another corresponds to whether the person is wearing glasses. These features were
discovered automatically, not fixed a priori. There is no need to have labels for
the hidden unit classifiers: gradient descent on an objective function of interest
naturally learns semantically interesting features, so long as the task requires
such features. We can learn about the distinction between male and female, or
about the presence or absence of glasses, without having to characterize all of
the configurations of the n � 1 other features by examples covering all of these
combinations of values. This form of statistical separability is what allows one to
generalize to new configurations of a person’s features that have never been seen
during training.
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(Radford et al 2015)

Man wearing 
glasses Man Woman

Woman wearing glasses



Mean Squared Error Ignores Small Details
CHAPTER 15. REPRESENTATION LEARNING

Input Reconstruction

Figure 15.5: An autoencoder trained with mean squared error for a robotics task has
failed to reconstruct a ping pong ball. The existence of the ping pong ball and all of its
spatial coordinates are important underlying causal factors that generate the image and
are relevant to the robotics task. Unfortunately, the autoencoder has limited capacity,
and the training with mean squared error did not identify the ping pong ball as being
salient enough to encode. Images graciously provided by Chelsea Finn.

of a robotics task in which an autoencoder has failed to learn to encode a small
ping pong ball. This same robot is capable of successfully interacting with larger
objects, such as baseballs, which are more salient according to mean squared error.

Other definitions of salience are possible. For example, if a group of pixels
follow a highly recognizable pattern, even if that pattern does not involve extreme
brightness or darkness, then that pattern could be considered extremely salient.
One way to implement such a definition of salience is to use a recently developed
approach called generative adversarial networks (Goodfellow et al., 2014c). In
this approach, a generative model is trained to fool a feedforward classifier. The
feedforward classifier attempts to recognize all samples from the generative model
as being fake, and all samples from the training set as being real. In this framework,
any structured pattern that the feedforward network can recognize is highly salient.
The generative adversarial network will be described in more detail in Sec. 20.10.4.
For the purposes of the present discussion, it is sufficient to understand that they
learn how to determine what is salient. Lotter et al. (2015) showed that models
trained to generate images of human heads will often neglect to generate the ears
when trained with mean squared error, but will successfully generate the ears when
trained with the adversarial framework. Because the ears are not extremely bright
or dark compared to the surrounding skin, they are not especially salient according
to mean squared error loss, but their highly recognizable shape and consistent
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(Chelsea Finn)



GANs Learn a Cost Function
CHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left) Ground truth. This is the correct image, that the network should
emit. (Center) Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right) Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

position means that a feedforward network can easily learn to detect them, making
them highly salient under the generative adversarial framework. See Fig. 15.6
for example images. Generative adversarial networks are only one step toward
determining which factors should be represented. We expect that future research
will discover better ways of determining which factors to represent, and develop
mechanisms for representing different factors depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes rule, p(x | y)
would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (“the laws
of the universe are constant”) while the marginal distribution over the underlying
causes can change. Hence, better generalization and robustness to all kinds of
changes can be expected via learning a generative model that attempts to recover
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(Lotter et al, 2015)

Capture predictable details regardless of scale



Conclusion

• Generative adversarial nets 

• Prioritize generating realistic samples over 
assigning high probability to all samples 

• Learn a cost function instead of using a fixed cost 
function 

• Learn that all predictable structures are important, 
even if they are small or faint


