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Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
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Taxonomy of Generative Models

Maximum Likelihood

Explicit density Implicit density

…

Tractable density
-Fully visible belief nets 
 -NADE 
 -MADE 
 -PixelRNN 
-Change of variables 
models (nonlinear ICA)

Approximate density

Variational
Variational autoencoder

Markov Chain
Boltzmann machine

Markov Chain

Direct

GSN

GAN
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Fully Visible Belief Nets
• Explicit formula based on chain 

rule: 

• Disadvantages: 

• O(n) sample generation cost 

• Currently, do not learn a useful 
latent representation
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(Frey et al, 1996)

PixelCNN elephants 
(van den Ord et al 2016)
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Change of Variables
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Disadvantages: 
- Transformation must be 

invertible 
- Latent dimension must 

match visible dimension

64x64 ImageNet Samples 
Real NVP (Dinh et al 2016)

e.g. Nonlinear ICA (Hyvärinen 1999)
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Variational Autoencoder
zz
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(Kingma and Welling 2013, Rezende et al 2014)

CIFAR-10 samples 
(Kingma et al 2016)

Disadvantages: 
-Not asymptotically 
consistent unless q is 
perfect 
-Samples tend to have lower 
quality
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Boltzmann Machines

• Partition function is intractable 

• May be estimated with Markov chain methods 

• Generating samples requires Markov chains too
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GANs
• Use a latent code 

• Asymptotically consistent (unlike variational 
methods) 

• No Markov chains needed 

• Often regarded as producing the best samples 

• No good way to quantify this
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Generator Network
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-Must be differentiable 
 - In theory, could use REINFORCE for discrete 
variables 
- No invertibility requirement 
- Trainable for any size of z 
- Some guarantees require z to have higher 

dimension than x 
- Can make x conditionally Gaussian given z but 

need not do so
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Training Procedure
• Use SGD-like algorithm of choice (Adam) on two 

minibatches simultaneously: 

• A minibatch of training examples 

• A minibatch of generated samples 

• Optional: run k steps of one player for every step of 
the other player.
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Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct
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Non-Saturating Game
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-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples
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Maximum Likelihood Game

(“On Distinguishability Criteria for Estimating Generative 
Models”, Goodfellow 2014, pg 5)

2 THE AUTHOR

Maximum likelihood Non-saturating
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When discriminator is optimal, the generator 
gradient matches that of maximum likelihood
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Maximum Likelihood Samples



(Goodfellow 2016)

Discriminator Strategy
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Data 
Model 

distribution

Optimal D(x) for any p
data

(x) and p
model

(x) is always

A cooperative rather than 
adversarial view of GANs: 
the discriminator tries to 
estimate the ratio of the data 
and model distributions, and 
informs the generator of its 
estimate in order to guide its 
improvements.

z

x

Discriminator
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Comparison of Generator Losses

Accepted as a workshop contribution at ICLR 2015

Figure 1: The cost the generator pays for sampling a point is a function of the optimal discriminator’s
output for that point. This much is true for maximum likelihood, the minimax formulation of the
distinguishability game, and a heuristic reformulation used in most experiments by Goodfellow
et al. (2014). Where the methods differ is the exact value of that cost. As we can see, the cost for
maximum likelihood only has significant gradient through the discriminator if the discriminator is
fooled with high confidence. Since this is an extremely rare event when sampling from an untrained
generator, estimates of the maximum likelihood gradient based on this approach have high variance.

From this vantage point it is clear that to obtain the maximum likelihood derivatives, we need

f(x) = �pd(x)

pg(x)
.

(We could also add an arbitrary constant and still obtain the correct result) Suppose our discriminator
is given by pc(y = 1 | x) = � (a(x)) where � is the logistic sigmoid function. Suppose further that
our discriminator has converged to its optimal value for the current generator,

pc(y = 1 | x) = pd(x)

pg(x) + pd(x)
.

Then f(x) = � exp (a(x)). This is clearly different from the value given by the distinguishability
game, which simplifies to f(x) = �⇣ (a(x)), where ⇣ is the softplus function. See this function
plotted alongside the GAN cost in Fig 1.

In other words, the discriminator gives us the necessary information to compute the maximum like-
lihood gradient of the generator, but it requires that we abandon the distinguishability game. In
practice, the estimator based on exp (a(x)) has too high of variance. For an untrained model, sam-
pling from the generator almost always yields very low values of pd(x)

pg(x)
. The value of the expectation

is dominated by the rare cases where the generator manages to sample something that resembles the
data by chance. Empirically, GANs have been able to overcome this problem but it is not entirely
clear why. Further study is needed to understand exactly what tradeoff GANs are making.

5
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DCGAN Architecture

(Radford et al 2015)

Most “deconvs” are batch normalized
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DCGANs for LSUN Bedrooms

(Radford et al 2015)
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Vector Space ArithmeticCHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

common is that one could imagine learning about each of them without having to

see all the configurations of all the others. Radford et al. (2015) demonstrated that
a generative model can learn a representation of images of faces, with separate
directions in representation space capturing different underlying factors of variation.
Figure 15.9 demonstrates that one direction in representation space corresponds
to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
fixed a priori. There is no need to have labels for the hidden unit classifiers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, so long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all of the configurations of the n � 1 other
features by examples covering all of these combinations of values. This form of
statistical separability is what allows one to generalize to new configurations of a
person’s features that have never been seen during training.

552

Man 
with glasses

Man Woman

Woman with Glasses
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Mode Collapse
• Fully optimizing the discriminator with the 

generator held constant is safe 

• Fully optimizing the generator with the 
discriminator held constant results in mapping all 
points to the argmax of the discriminator 

• Can partially fix this by adding nearest-neighbor 
features constructed from the current minibatch to 
the discriminator (“minibatch GAN”)

(Salimans et al 2016)
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Minibatch GAN on CIFAR

Training Data Samples
(Salimans et al 2016)
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Minibatch GAN on ImageNet

(Salimans et al 2016)
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Cherry-Picked Results
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GANs Work Best When 
Output Entropy is Low

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT1 , AKATA2 , XCYAN1 , LLAJAN1

Bernt Schiele, Honglak Lee SCHIELE2 ,HONGLAK1

1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)
2 Max Planck Institute for Informatics, Saarbrücken, Germany (MPI-INF.MPG.DE)

Abstract
Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cat-
egories, such as faces, album covers, and room
interiors. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction
In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”. The problem of
generating images from visual descriptions gained interest
in the research community, but it is far from being solved.

Traditionally this type of detailed visual information about
an object has been captured in attribute representations -
distinguishing characteristics the object category encoded
into a vector (Farhadi et al., 2009; Kumar et al., 2009;
Parikh & Grauman, 2011; Lampert et al., 2014), in partic-
ular to enable zero-shot visual recognition (Fu et al., 2014;
Akata et al., 2015), and recently for conditional image gen-
eration (Yan et al., 2015).

While the discriminative power and strong generalization

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

this small bird has a pink 
breast and crown, and black 
primaries and secondaries.

the flower has petals that 
are bright pinkish purple 
with white stigma

this magnificent fellow is 
almost all black with a red 
crest, and white cheek patch.

this white and yellow flower 
have thin white petals and a 
round yellow stamen

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories, unseen
text. Right: captions are from the training set.

properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-
guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-
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Optimization and Games

✓⇤ = argmin✓J(✓)

Optimization: find a minimum:

Game:
Player 1 controls ✓(1)

Player 2 controls ✓(2)

Player 1 wants to minimize J (1)
(✓(1),✓(2)

)

Player 2 wants to minimize J (2)
(✓(1),✓(2)

)

Depending on J functions, they may compete or cooperate.
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Games    optimization◆
Example:

✓(1)
= ✓

✓(2)
= {}

J (1)
(✓(1),✓(2)

) = J(✓(1)
)

J (2)
(✓(1),✓(2)

) = 0
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Nash Equilibrium

• No player can reduce their cost by changing their own strategy: 

• In other words, each player’s cost is minimal with respect to that 
player’s strategy 

• Finding Nash equilibria     optimization (but not clearly useful)

8✓(1),J (1)(✓(1),✓(2)⇤) � J (1)(✓(1)⇤,✓(2)⇤)

8✓(2),J (2)(✓(1)⇤,✓(2)) � J (2)(✓(1)⇤,✓(2)⇤)

✓
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Well-Studied Cases

• Finite minimax (zero-sum games) 

• Finite mixed strategy games 

• Continuous, convex games 

• Differential games (lion chases gladiator)
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Continuous Minimax Game

Solution is a saddle point of V.

Not just any saddle point: must 
specifically be a maximum for player 1 

and a minimum for player 2 



(Goodfellow 2016)

Local Differential Nash 
Equilibria

r✓(i)J (i)
(✓(1),✓(2)

) = 0

Necessary:

r2
✓(i)J

(i)
(✓(1),✓(2)

) is positive semi-definite

Su�cient:

r2
✓(i)J

(i)
(✓(1),✓(2)

) is positive definite

(Ratliff et al 2013)
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Sufficient Condition for Simultaneous 
Gradient Descent to Converge

The eigenvalues of r✓! must have positive real part:


r2

✓(1)J
(1) r✓(1)r✓(2)J (2)

r✓(2)r✓(1)J (1) r2
✓(2)J

(2)

�

(I call this the “generalized Hessian”)

(Ratliff et al 2013)

! =


r✓(1)J (1)(✓(1),✓(2))
r✓(2)J (2)(✓(1),✓(2))

�
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Interpretation
• Each player’s Hessian should have large, positive 

eigenvalues, expressing a strong preference to keep doing 
their current strategy 

• The Jacobian of one player’s gradient with respect to the 
other player’s parameters should have smaller contributions 
to the eigenvalues, meaning each player has limited ability 
to change the other player’s behavior at convergence 

• Does not apply to GANs, so their convergence remains an 
open question
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Equilibrium Finding Heuristics

• Keep parameters near their running average 

• Periodically assign running average value to 
parameters 

• Constrain parameters to lie near running average 

• Add loss for deviation from running average
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Stabilized Training
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Other Games in AI
• Robust optimization / robust control 

• for security/safety, e.g. resisting adversarial examples 

• Domain-adversarial learning for domain adaptation 

• Adversarial privacy 

• Guided cost learning 

• Predictability minimization 

• …
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Conclusion
• GANs are generative models that use supervised 

learning to approximate an intractable cost function 

• GANs can simulate many cost functions, including 
the one used for maximum likelihood 

• Finding Nash equilibria in high-dimensional, 
continuous, non-convex games is an important open 
research problem


