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(GGenerative Modeling
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e generation
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Maximum Likelihood
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Taxonomy of Generative Models
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Fully Visible Belief Nets

e Explicit formula based on chain (Frey et al, 1996)

rule:

pmodel( ) pmodel X1 Hpmodel(fpz ‘ L1yeonydg— 1

- “hY

e Disadvantages: &“‘ I! I
e O(n) sample generation cost

PlxelCNN elephahts
e Currently, do not learn a useful (van den Ord et al 2016)

latent representation

(Goodfellow 2016)



Change of Variables

y = g(z) = pz(x) = py(g(x)) |det (8‘?)(;3)>

e.g. Nonlinear ICA (Hyvérinen 1999)

Disadvantages:

- Transformation must be
invertible

- Latent dimension must

match visible dimension

64x64 ImageNet Samples
Real NVP (Dinh et al 2016)

(Goodfellow 2016)



Variational Autoencoder

(Kingma and Welling 2013, Rezende et al 2014)

log p(x) > log p(x)
Jqu logp(a: z)+ H(q)

CIFAR—lO Samples
(Kingma et al 2016)

— Dkuv (q(2)|lp(z | x))

Disadvantages:

-Not asymptotically
consistent unless ¢ is
perfect

-Samples tend to have lower

quality

(Goodfellow 2016)



Boltzmann Machines

p(x) = exp (~E(x. 2))

7 = ZZeXp  2))

e Partition function is intractable
e May be estimated with Markov chain methods

e Generating samples requires Markov chains too

(Goodfellow 2016)



(GANSs

Use a latent code

Asymptotically consistent (unlike variational
methods)

No Markov chains needed
Often regarded as producing the best samples

e No good way to quantify this

(Goodfellow 2016)



®

Generator Network
r = G(z; H(G))

-Must be differentiable

- In theory, could use REINFORCE for discrete

variables

- No invertibility requirement

- Trainable for any size of z

- Some guarantees require z to have higher
dimension than x

- Can make x conditionally Gaussian given z but
need not do so

(Goodfellow 2016)



Training Procedure

e Use SGD-like algorithm of choice (Adam) on two
minibatches simultaneously:

e A minibatch of training examples
e A minibatch of generated samples

e Optional: run £ steps of one player for every step of
the other player.

(Goodfellow 2016)



Minimax Game

L
I = =S Banpia log D(@) — 5

2
JG) — _ (D)

1

. log (1 — D (G(2)))

-Equilibrium is a saddle point of the discriminator loss

-Resembles Jensen-Shannon divergence

-Generator minimizes the log-probability of the discriminator

being correct

(Goodfellow 2016)



Non-Saturating Game

1 1
D) = =By, log D(@) — S, log (1 - D (G(2)))

1
JG) = —5Ezlog D (G(2))

-Equilibrium no longer describable with a single loss
-Generator maximizes the log-probability of the discriminator
being mistaken

-Heuristically motivated; generator can still learn even when

discriminator successfully rejects all generator samples

(Goodfellow 2016)



Maximum Likelihood Game

(D) _ _% 2 log D(x) — % . log (1 — D (G(2)))
7O = —E.exp (071 (D(G(2)))

When discriminator is optimal, the generator
oradient matches that of maximum likelihood

(“On Distinguishability Criteria for Estimating Generative
Models”, Goodfellow 2014, pg 5) S



Maximum Likelihood Samples

(Goodfellow 2016)



Discriminator Strategy

Optimal D(x) for any pgata(@) and pmeodel () is always

pdata(m)
Pdata (37) = Pmodel (113)

D(x) =

A cooperative rather than. . .
Discriminator Data
adversarial view of GANs: \ .:“..4/

A Model
the discriminator tries to - —

distribution
estimate the ratio of the data

and model distributions, and

informs the generator of its | v
estimate in order to guide its

Improvements.

(Goodfellow 2016)



Comparison of Generator Losses
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DCGAN Architecture
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(Radford et al 2015)
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DCGANS for LSUN Bedrooms

(Radford et al 2015)

(Goodfellow 2016)



Vector Space Arithmetic
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Woman with Glasses



Mode Collapse

e Fully optimizing the discriminator with the
generator held constant is safe

e Fully optimizing the generator with the
discriminator held constant results in mapping all
points to the argmax of the discriminator

e Can partially fix this by adding nearest-neighbor
features constructed from the current minibatch to

the discriminator (“minibatch GAN”)
(Salimans et al 2016)

(Goodfellow 2016)



Minibatch GAN on CIFAR
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Training Data Samples
(Salimans et a,l 2016) (Goodfellow 2016




Minibatch GAN on ImageNet
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Cherry-Picked Results

L VR
(Goodfellow 2016)



(GANs Work Best When
Output Entropy is Low

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red

primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

(Reed et al 2016)

(Goodfellow 2016)



Optimization and Games

Optimization: find a minimum:

0" = argmingJ(6)

(Game:

Player 1 controls o)
Player 2 controls 02
Player 1 wants to minimize J<1)(9(1), 9(2))
Player 2 wants to minimize J<2)(0(1), 0(2))

Depending on J functions, they may compete or cooperate.

(Goodfellow 2016)



Games = optimization

Example:
o) — g
0 = {}

J(l)(9(1)7 9(2)) — J(g(l))
J2 M 92 =0



Nash Equilibrium

e No player can reduce their cost by changing their own strategy:

voM) 71 (9 2%y > 71 (g(1)= g(2)%)
Vo2 72 9+ ) > 72 (9= g(2)%)

e In other words, each player’s cost is minimal with respect to that
player’s strateqy

e Finding Nash equilibria C optimization (but not clearly useful)

(Goodfellow 2016)



Well-Studied Cases

Finite minimax (zero-sum games)
Finite mixed strategy games
Continuous, convex games

Differential games (lion chases gladiator)

(Goodfellow 2016)



Continuous Minimax Game

Solution

Not ]
specifical

is a saddle point of V.

~10

ust any saddle point: must o5

ly be a maximum for player 1

and

| a minimum for player 2

(Goodfellow 2016)



L.ocal Differential Nash
FEquilibria

Voo 1](’&')(49(1)7 3(2)) —0

Necessary:

Vg(i) J(i)(H(l), 9(2>) is positive semi-definite
Suflicient:

Vg(i) J(i)(é’(l), 9(2)) is positive definite

(Ratliff et al 2013)

(Goodfellow 2016)



Sufficient Condition for Simultaneous
Gradient Descent to Converge

Vo JD (O 92)
Vo J 2 (0, 02))

The eigenvalues of Vgw must have positive real part:

V2., JW Vo) Vg J2)

(I call this the “generalized Hessian”)

(Ratliff et al 2013) S—



Interpretation

e Each player’s Hessian should have large, positive
eigenvalues, expressing a strong preference to keep doing
their current strategy

e The Jacobian of one player’s gradient with respect to the
other player’s parameters should have smaller contributions
to the eigenvalues, meaning each player has limited ability

to change the other player’s behavior at convergence

e Does not apply to GANS, so their convergence remains an

open question

(Goodfellow 2016)



Equilibrium Finding Heuristics

e Keep parameters near their running average

e Periodically assign running average value to

parameters
e Constrain parameters to lie near running average

e Add loss for deviation from running average

(Goodfellow 2016)



Stabilized Training

0 500 1000 1500 2000 2500

(Goodfellow 2016)



Other Games in Al

Robust optimization / robust control

o for security/safety, e.g. resisting adversarial examples
Domain-adversarial learning for domain adaptation
Adversarial privacy

Guided cost learning

Predictability minimization

(Goodfellow 2016)



Conclusion

e (GANs are generative models that use supervised

learning to approximate an intractable cost function

e GANSs can simulate many cost functions, including

the one used for maximum likelihood

 Finding Nash equilibria in high-dimensional,
continuous, non-convex games 1s an Important open

research problem

(Goodfellow 2016)



