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Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
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Conditional Generative Modeling

SO, I REMEMBER WHEN THEY CAME HERE
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Semi-supervised learning
SO, I REMEMBER WHEN THEY CAME HERE

???
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Taxonomy of Generative Models

Maximum Likelihood

Explicit density Implicit density

…

Tractable density
-Fully visible belief nets 
 -NADE / MADE 
 -PixelRNN / WaveNet 
-Change of variables 
models (nonlinear ICA)

Approximate density

Variational
Variational autoencoder

Markov Chain
Boltzmann machine

Markov Chain

Direct

GSN

GAN
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Fully Visible Belief Nets
• Explicit formula based on chain 

rule: 

• Disadvantages: 

• O(n) non-parallelizable steps to 
sample generation 

• No latent representation
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(Frey et al, 1996)

PixelCNN elephants 
(van den Oord et al 2016)
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WaveNet

Amazing quality 
Sample generation slow 

(Not sure how much 
is just research code not 
being optimized and how 

much is intrinsic)

I quoted this claim at MLSLP, but as of 
2016-09-19 I have been informed it in fact takes 

2 minutes to synthesize one second of audio.
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GANs

• Have a fast, parallelizable sample generation process 

• Use a latent code 

• Are often regarded as producing the best samples 

• No good way to quantify this
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Generator Network
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-Must be differentiable 
 - In theory, could use REINFORCE for discrete 
variables 
- No invertibility requirement 
- Trainable for any size of z 
- Some guarantees require z to have higher 

dimension than x 
- Can make x conditionally Gaussian given z but 

need not do so
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Training Procedure
• Use SGD-like algorithm of choice (Adam) on two 

minibatches simultaneously: 

• A minibatch of training examples 

• A minibatch of generated samples 

• Optional: run k steps of one player for every step of 
the other player.
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Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct
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Non-Saturating Game
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-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples
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Maximum Likelihood Game

(“On Distinguishability Criteria for Estimating Generative 
Models”, Goodfellow 2014, pg 5)

2 THE AUTHOR
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When discriminator is optimal, the generator 
gradient matches that of maximum likelihood
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Discriminator Strategy
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Data 
Model 

distribution

Optimal D(x) for any p
data

(x) and p
model

(x) is always

A cooperative rather than 
adversarial view of GANs: 
the discriminator tries to 
estimate the ratio of the data 
and model distributions, and 
informs the generator of its 
estimate in order to guide its 
improvements.

z

x

Discriminator
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DCGAN Architecture

(Radford et al 2015)

Most “deconvs” are batch normalized
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DCGANs for LSUN Bedrooms

(Radford et al 2015)
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Vector Space ArithmeticCHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

common is that one could imagine learning about each of them without having to

see all the configurations of all the others. Radford et al. (2015) demonstrated that
a generative model can learn a representation of images of faces, with separate
directions in representation space capturing different underlying factors of variation.
Figure 15.9 demonstrates that one direction in representation space corresponds
to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
fixed a priori. There is no need to have labels for the hidden unit classifiers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, so long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all of the configurations of the n � 1 other
features by examples covering all of these combinations of values. This form of
statistical separability is what allows one to generalize to new configurations of a
person’s features that have never been seen during training.

552

Man 
with glasses

Man Woman

Woman with Glasses
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Mode Collapse
• Fully optimizing the discriminator with the 

generator held constant is safe 

• Fully optimizing the generator with the 
discriminator held constant results in mapping all 
points to the argmax of the discriminator 

• Can partially fix this by adding nearest-neighbor 
features constructed from the current minibatch to 
the discriminator (“minibatch GAN”)

(Salimans et al 2016)
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Minibatch GAN on CIFAR

Training Data Samples
(Salimans et al 2016)
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Minibatch GAN on ImageNet

(Salimans et al 2016)
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Cherry-Picked Samples
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Conditional Generation: Text to Image

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT1 , AKATA2 , XCYAN1 , LLAJAN1

Bernt Schiele, Honglak Lee SCHIELE2 ,HONGLAK1

1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)
2 Max Planck Institute for Informatics, Saarbrücken, Germany (MPI-INF.MPG.DE)

Abstract
Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cat-
egories, such as faces, album covers, and room
interiors. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction
In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”. The problem of
generating images from visual descriptions gained interest
in the research community, but it is far from being solved.

Traditionally this type of detailed visual information about
an object has been captured in attribute representations -
distinguishing characteristics the object category encoded
into a vector (Farhadi et al., 2009; Kumar et al., 2009;
Parikh & Grauman, 2011; Lampert et al., 2014), in partic-
ular to enable zero-shot visual recognition (Fu et al., 2014;
Akata et al., 2015), and recently for conditional image gen-
eration (Yan et al., 2015).

While the discriminative power and strong generalization

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

this small bird has a pink 
breast and crown, and black 
primaries and secondaries.

the flower has petals that 
are bright pinkish purple 
with white stigma

this magnificent fellow is 
almost all black with a red 
crest, and white cheek patch.

this white and yellow flower 
have thin white petals and a 
round yellow stamen

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories, unseen
text. Right: captions are from the training set.

properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-
guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-
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(Reed et al 2016)

Output distributions with lower entropy are easier
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Semi-Supervised Classification 
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6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

Figure 3: (Left) samples generated by model dur-
ing semi-supervised training. Samples can be
clearly distinguished from images coming from
MNIST dataset. (Right) Samples generated with
minibatch discrimination. Samples are com-
pletely indistinguishable from dataset images.

The MNIST dataset contains 60, 000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-
tion [20] and add Gaussian noise to the output
of each layer of the discriminator. Table 1 sum-
marizes our results.

Samples generated by the generator during
semi-supervised learning using feature match-
ing (Section 3.1) do not look visually appealing
(left Fig. 3). By using minibatch discrimination
instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing. Similarly, researchers in our institution were not able to find any artifacts that would al-
low them to distinguish samples. However, semi-supervised learning with minibatch discrimination
does not produce as good a classifier as does feature matching.

Model Number of incorrectly predicted test examples
for a given number of labeled samples

20 50 100 200

DGN [21] 333 ± 14

Virtual Adversarial [22] 212
CatGAN [14] 191 ± 10

Skip Deep Generative Model [23] 132 ± 7

Ladder network [24] 106 ± 37

Auxiliary Deep Generative Model [23] 96 ± 2

Our model 1677 ± 452 221 ± 136 93 ± 6.5 90 ± 4.2

Ensemble of 10 of our models 1134 ± 445 142 ± 96 86 ± 5.6 81 ± 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

6.2 CIFAR-10

Model Test error rate for
a given number of labeled samples

1000 2000 4000 8000

Ladder network [24] 20.40±0.47

CatGAN [14] 19.58±0.46

Our model 21.83±2.01 19.61±2.09 18.63±2.32 17.72±1.82

Ensemble of 10 of our models 19.22±0.54 17.25±0.66 15.59±0.47 14.87±0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

CIFAR-10 is a small, well studied dataset of 32 ⇥ 32 natural images. We use this data set to study
semi-supervised learning, as well as to examine the visual quality of samples that can be achieved.
For the discriminator in our GAN we use a 9 layer deep convolutional network with dropout and
weight normalization. The generator is a 4 layer deep CNN with batch normalization. Table 2
summarizes our results on the semi-supervised learning task.

6

(Salimans et al 2016)

MNIST (Permutation Invariant)
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Semi-Supervised Classification 

(Salimans et al 2016)
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6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

Figure 3: (Left) samples generated by model dur-
ing semi-supervised training. Samples can be
clearly distinguished from images coming from
MNIST dataset. (Right) Samples generated with
minibatch discrimination. Samples are com-
pletely indistinguishable from dataset images.

The MNIST dataset contains 60, 000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-
tion [20] and add Gaussian noise to the output
of each layer of the discriminator. Table 1 sum-
marizes our results.

Samples generated by the generator during
semi-supervised learning using feature match-
ing (Section 3.1) do not look visually appealing
(left Fig. 3). By using minibatch discrimination
instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing. Similarly, researchers in our institution were not able to find any artifacts that would al-
low them to distinguish samples. However, semi-supervised learning with minibatch discrimination
does not produce as good a classifier as does feature matching.

Model Number of incorrectly predicted test examples
for a given number of labeled samples

20 50 100 200

DGN [21] 333 ± 14

Virtual Adversarial [22] 212
CatGAN [14] 191 ± 10

Skip Deep Generative Model [23] 132 ± 7

Ladder network [24] 106 ± 37

Auxiliary Deep Generative Model [23] 96 ± 2

Our model 1677 ± 452 221 ± 136 93 ± 6.5 90 ± 4.2

Ensemble of 10 of our models 1134 ± 445 142 ± 96 86 ± 5.6 81 ± 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

6.2 CIFAR-10

Model Test error rate for
a given number of labeled samples

1000 2000 4000 8000

Ladder network [24] 20.40±0.47

CatGAN [14] 19.58±0.46

Our model 21.83±2.01 19.61±2.09 18.63±2.32 17.72±1.82

Ensemble of 10 of our models 19.22±0.54 17.25±0.66 15.59±0.47 14.87±0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

CIFAR-10 is a small, well studied dataset of 32 ⇥ 32 natural images. We use this data set to study
semi-supervised learning, as well as to examine the visual quality of samples that can be achieved.
For the discriminator in our GAN we use a 9 layer deep convolutional network with dropout and
weight normalization. The generator is a 4 layer deep CNN with batch normalization. Table 2
summarizes our results on the semi-supervised learning task.
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Model Percentage of incorrectly predicted test examples
for a given number of labeled samples

500 1000 2000

DGN [21] 36.02±0.10

Virtual Adversarial [22] 24.63

Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.61±0.24

Our model 18.44 ± 4.8 8.11 ± 1.3 6.16 ± 0.58

Ensemble of 10 of our models 5.88 ± 1.0

Figure 5: (Left) Error rate on SVHN. (Right) Samples from the generator for SVHN.

6.4 ImageNet
We tested our techniques on a dataset of unprecedented scale: 128 ⇥ 128 images from the
ILSVRC2012 dataset with 1,000 categories. To our knowledge, no previous publication has ap-
plied a generative model to a dataset with both this large of a resolution and this large a number
of object classes. The large number of object classes is particularly challenging for GANs due to
their tendency to underestimate the entropy in the distribution. We extensively modified a publicly
available implementation of DCGANs2 using TensorFlow [26] to achieve high performance, using
a multi-GPU implementation. DCGANs without modification learn some basic image statistics and
generate contiguous shapes with somewhat natural color and texture but do not learn any objects.
Using the techniques described in this paper, GANs learn to generate objects that resemble animals,
but with incorrect anatomy. Results are shown in Fig. 6.

Figure 6: Samples generated from the ImageNet dataset. (Left) Samples generated by a DCGAN.
(Right) Samples generated using the techniques proposed in this work. The new techniques enable
GANs to learn recognizable features of animals, such as fur, eyes, and noses, but these features are
not correctly combined to form an animal with realistic anatomical structure.

7 Conclusion

Generative adversarial networks are a promising class of generative models that has so far been
held back by unstable training and by the lack of a proper evaluation metric. This work presents
partial solutions to both of these problems. We propose several techniques to stabilize training
that allow us to train models that were previously untrainable. Moreover, our proposed evaluation
metric (the Inception score) gives us a basis for comparing the quality of these models. We apply
our techniques to the problem of semi-supervised learning, achieving state-of-the-art results on a
number of different data sets in computer vision. The contributions made in this work are of a
practical nature; we hope to develop a more rigorous theoretical understanding in future work.

2https://github.com/carpedm20/DCGAN-tensorflow
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(Goodfellow 2016)

Optimization and Games

✓⇤ = argmin✓J(✓)

Optimization: find a minimum:

Game:
Player 1 controls ✓(1)

Player 2 controls ✓(2)

Player 1 wants to minimize J (1)
(✓(1),✓(2)

)

Player 2 wants to minimize J (2)
(✓(1),✓(2)

)

Depending on J functions, they may compete or cooperate.



(Goodfellow 2016)

Other Games in AI
• Robust optimization / robust control 

• for security/safety, e.g. resisting adversarial examples 

• Domain-adversarial learning for domain adaptation 

• Adversarial privacy 

• Guided cost learning 

• Predictability minimization 

• …



(Goodfellow 2016)

Conclusion
• GANs are generative models that use supervised 

learning to approximate an intractable cost function 

• GANs may be useful for text-to-speech and for 
speech recognition, especially in the semi-supervised 
setting 

• Finding Nash equilibria in high-dimensional, 
continuous, non-convex games is an important open 
research problem


