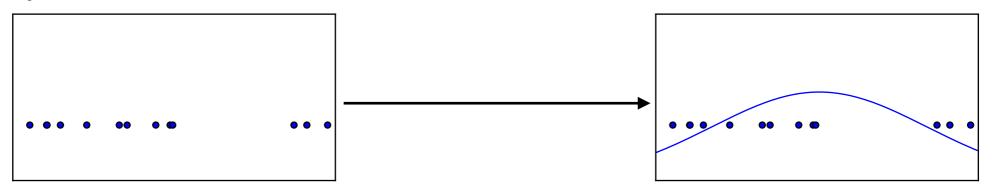
Generative Adversarial Networks (GANs)

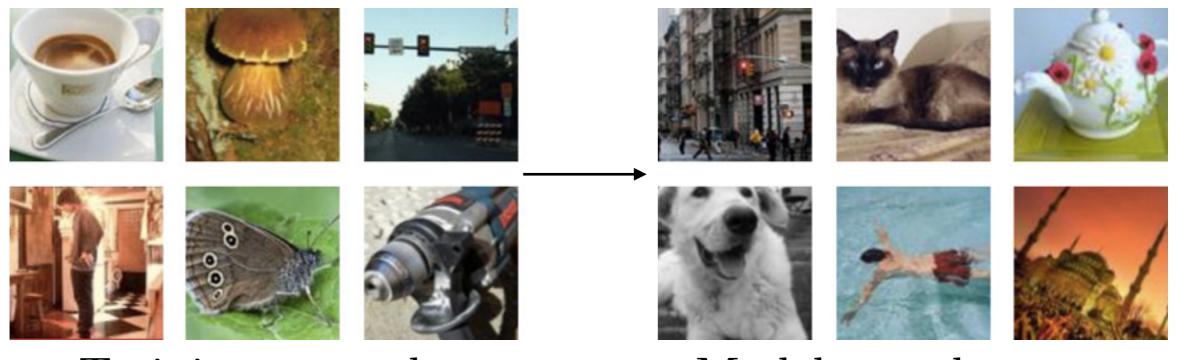
Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13

Generative Modeling

• Density estimation



• Sample generation



Training examples

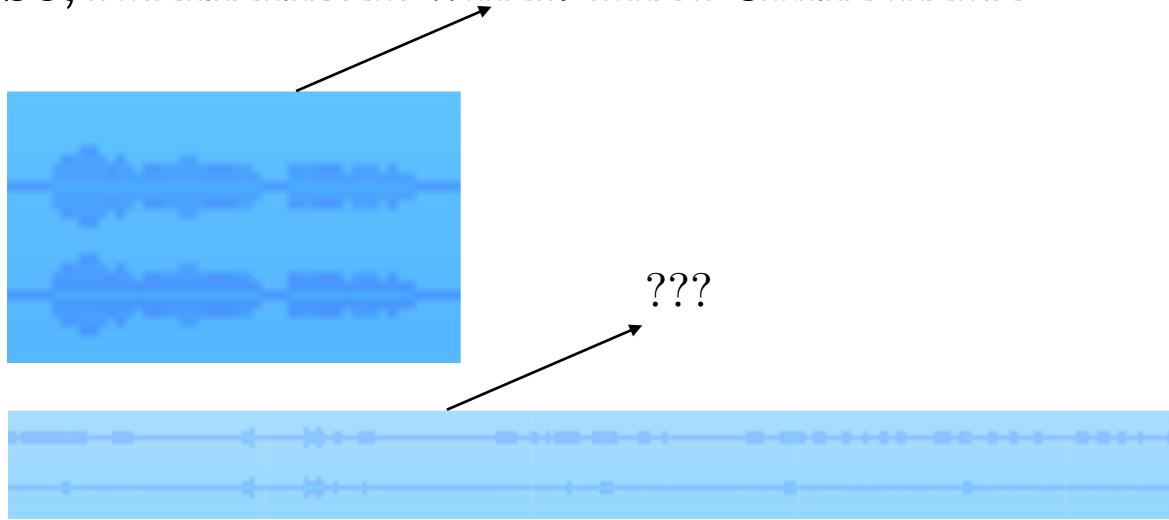
Model samples

Conditional Generative Modeling

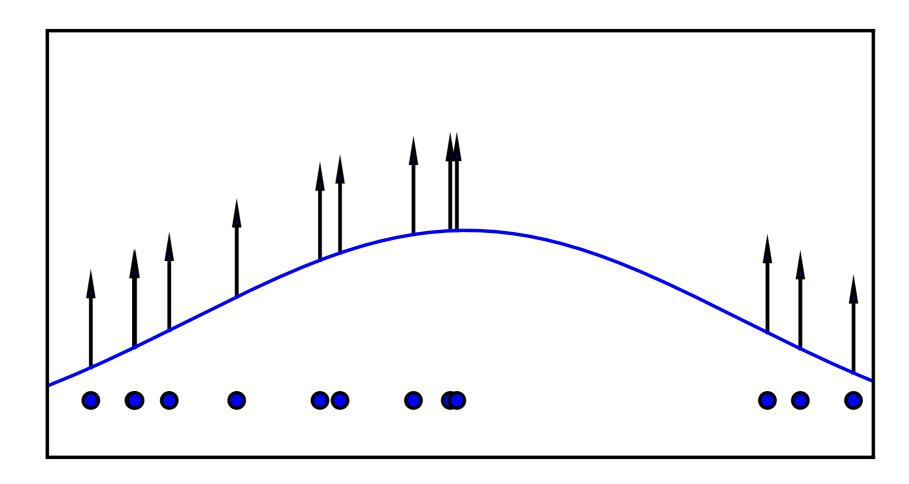
SO, I REMEMBER WHEN THEY CAME HERE

Semi-supervised learning

SO, I REMEMBER WHEN THEY CAME HERE

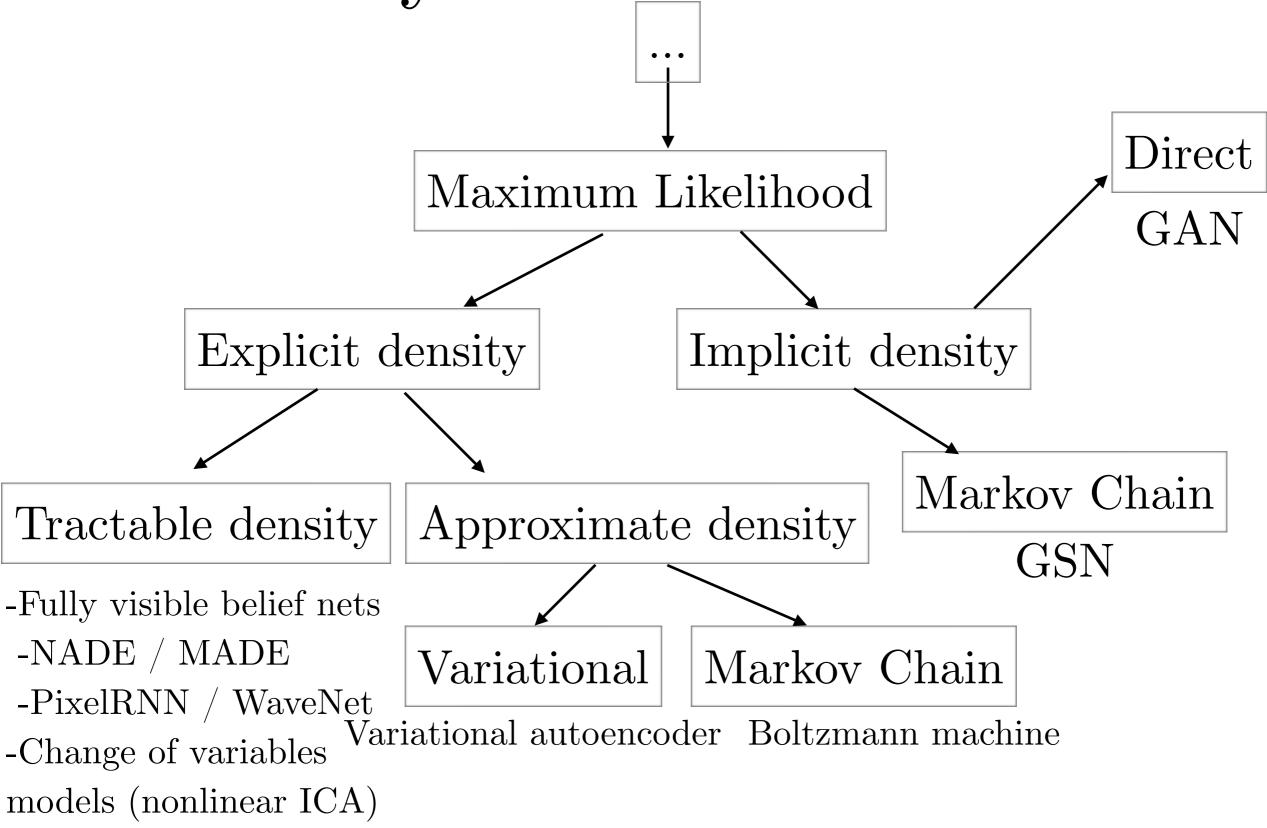


Maximum Likelihood



$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$$

Taxonomy of Generative Models



Fully Visible Belief Nets

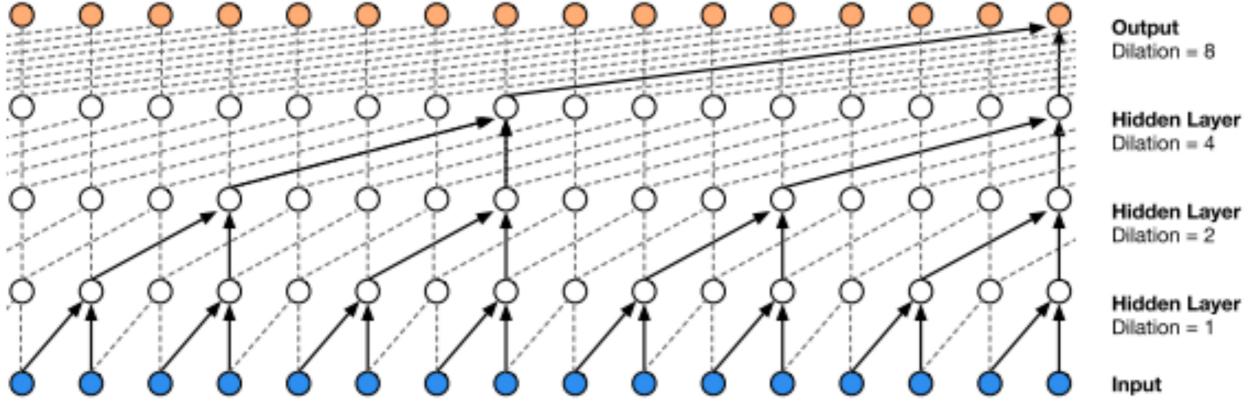
• Explicit formula based on chain (Frey et al, 1996) rule:

$$p_{\text{model}}(\boldsymbol{x}) = p_{\text{model}}(x_1) \prod_{i=2} p_{\text{model}}(x_i \mid x_1, \dots, x_{i-1})$$

- Disadvantages:
 - O(n) non-parallelizable steps to sample generation
 - No latent representation

PixelCNN elephants (van den Oord et al 2016)

WaveNet



Amazing quality

Sample generation slow
(Not sure how much
is just research code not
being optimized and how
much is intrinsic)

I quoted this claim at MLSLP, but as of 2016-09-19 I have been informed it in fact takes 2 minutes to synthesize one second of audio.

@hardmaru it takes 90 minutes to synthesize one second of audio.

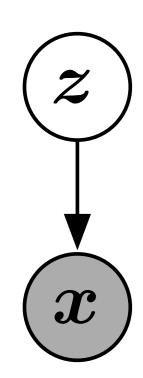
12:38 PM - 8 Sep 2016

GANS

- Have a fast, parallelizable sample generation process
- Use a latent code
- Are often regarded as producing the best samples
 - No good way to quantify this

Generator Network

$$\boldsymbol{x} = G(\boldsymbol{z}; \boldsymbol{\theta}^{(G)})$$



- -Must be differentiable
- In theory, could use REINFORCE for discrete variables
- No invertibility requirement
- Trainable for any size of z
- Some guarantees require z to have higher dimension than x
- Can make x conditionally Gaussian given z but need not do so

Training Procedure

- Use SGD-like algorithm of choice (Adam) on two minibatches simultaneously:
 - A minibatch of training examples
 - A minibatch of generated samples
- Optional: run k steps of one player for every step of the other player.

Minimax Game

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))$$
$$J^{(G)} = -J^{(D)}$$

- -Equilibrium is a saddle point of the discriminator loss
- -Resembles Jensen-Shannon divergence
- -Generator minimizes the log-probability of the discriminator being correct

Non-Saturating Game

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))$$
$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D(G(\boldsymbol{z}))$$

- -Equilibrium no longer describable with a single loss
- -Generator maximizes the log-probability of the discriminator being mistaken
- -Heuristically motivated; generator can still learn even when discriminator successfully rejects all generator samples

Maximum Likelihood Game

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right)$$
$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \exp \left(\sigma^{-1} \left(D\left(G(\boldsymbol{z})\right)\right)\right)$$

When discriminator is optimal, the generator gradient matches that of maximum likelihood

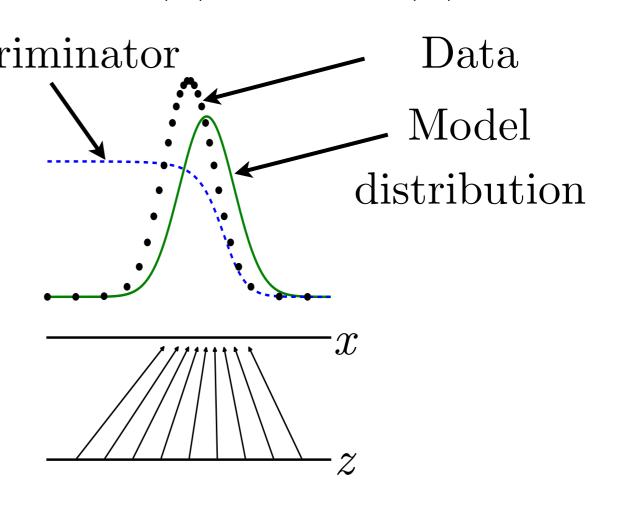
("On Distinguishability Criteria for Estimating Generative Models", Goodfellow 2014, pg 5)

Discriminator Strategy

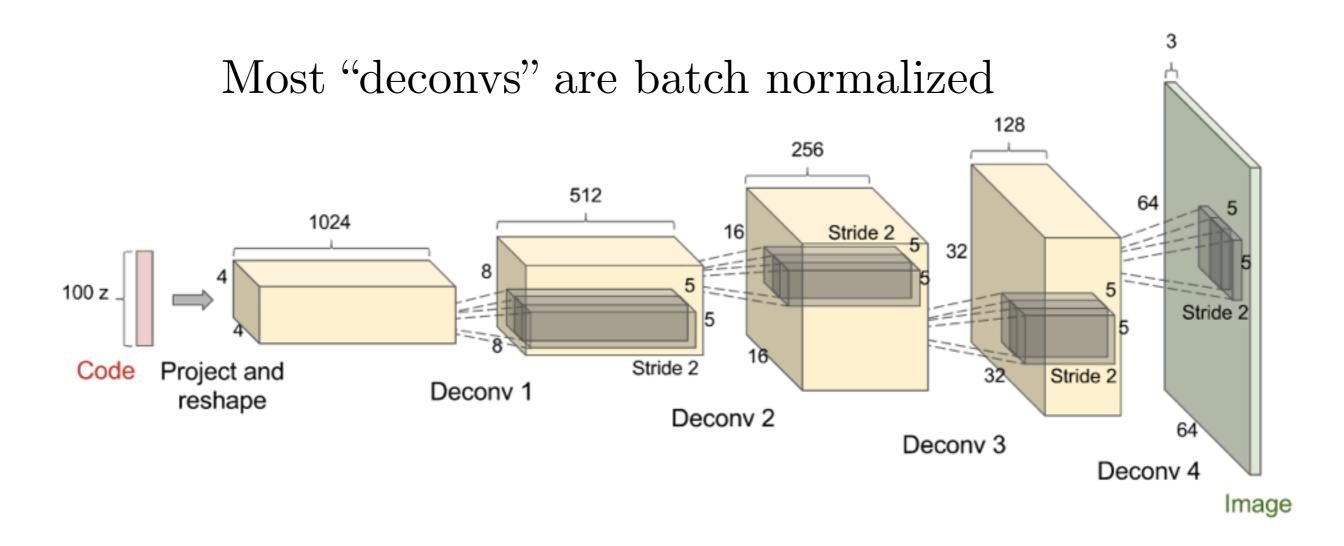
Optimal $D(\boldsymbol{x})$ for any $p_{\text{data}}(\boldsymbol{x})$ and $p_{\text{model}}(\boldsymbol{x})$ is always

$$D(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}$$

A cooperative rather than Discriminator adversarial view of GANs:
the discriminator tries to estimate the ratio of the data and model distributions, and informs the generator of its estimate in order to guide its improvements.



DCGAN Architecture



(Radford et al 2015)

DCGANs for LSUN Bedrooms

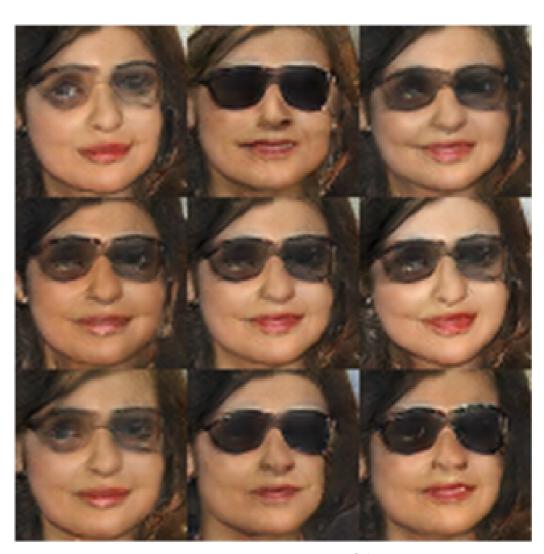
(Radford et al 2015)

Vector Space Arithmetic

Man with glasses

Man

Woman



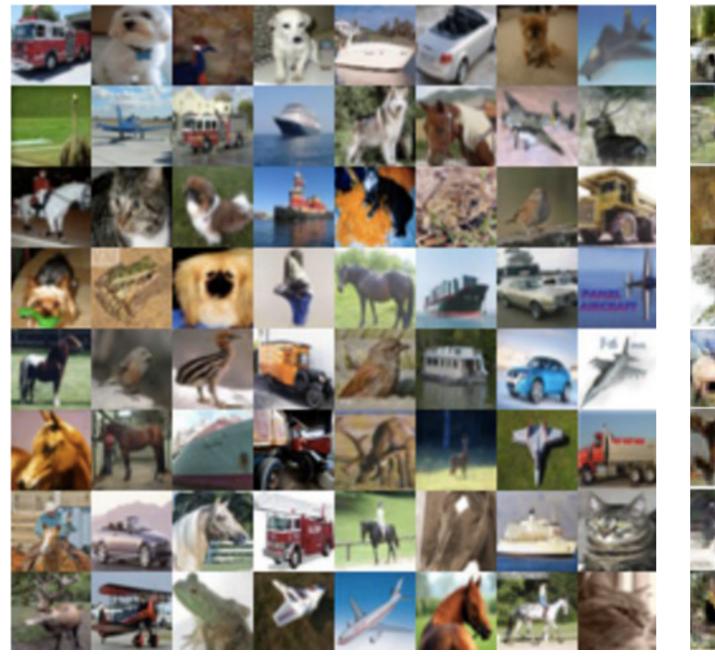
Woman with Glasses

Mode Collapse

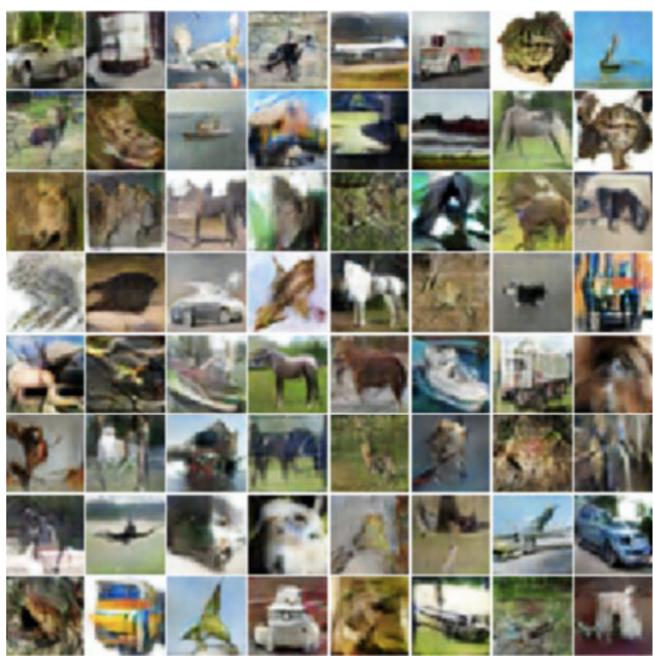
- Fully optimizing the discriminator with the generator held constant is safe
- Fully optimizing the generator with the discriminator held constant results in mapping all points to the argmax of the discriminator
- Can partially fix this by adding nearest-neighbor features constructed from the current minibatch to the discriminator ("minibatch GAN")

(Salimans et al 2016)

Minibatch GAN on CIFAR



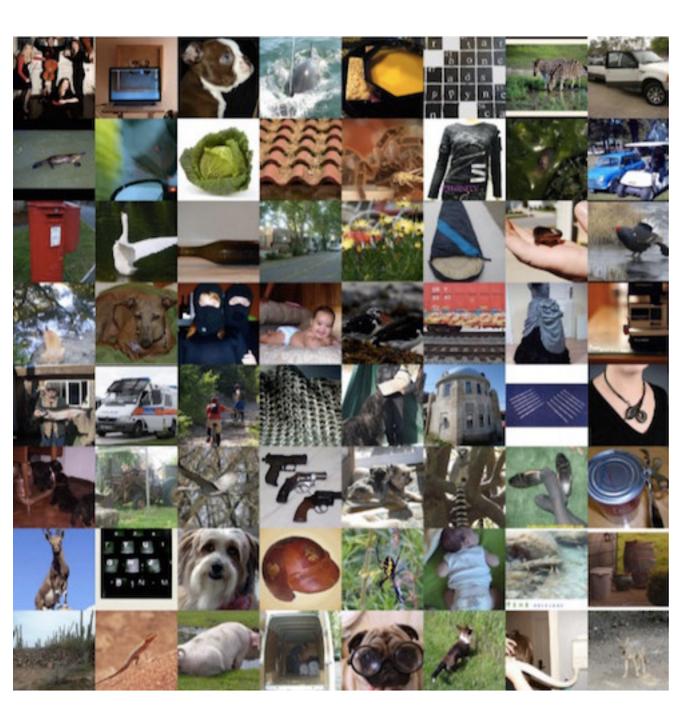
Training Data



Samples

(Salimans et al 2016)

Minibatch GAN on ImageNet





Cherry-Picked Samples

Conditional Generation: Text to Image

Output distributions with lower entropy are easier

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

this magnificent fellow is crest, and white cheek patch.

the flower has petals that are bright pinkish purple with white stigma

this white and yellow flower have thin white petals and a round yellow stamen

(Reed et al 2016)

Semi-Supervised Classification

MNIST (Permutation Invariant)

Model	Number of incorrectly predicted test examples				
	for a given number of labeled samples				
	20	50	100	200	
DGN [21]		333 ± 14			
Virtual Adversarial [22]		212			
CatGAN [14]	191 ± 10				
Skip Deep Generative Model [23]	132 ± 7				
Ladder network [24]	106 ± 37				
Auxiliary Deep Generative Model [23]			96 ± 2		
Our model	1677 ± 452	221 ± 136	93 ± 6.5	90 ± 4.2	
Ensemble of 10 of our models	1134 ± 445	142 ± 96	86 ± 5.6	81 ± 4.3	

Semi-Supervised Classification

CIFAR-10

Model	Test error rate for				
	a given number of labeled samples				
	1000	2000	4000	8000	
Ladder network [24]			20.40 ± 0.47		
CatGAN [14]			$19.58 {\pm} 0.46$		
Our model	21.83 ± 2.01	19.61 ± 2.09	18.63 ± 2.32	17.72 ± 1.82	
Ensemble of 10 of our models	$19.22 {\pm} 0.54$	17.25 ± 0.66	15.59 ± 0.47	14.87 ± 0.89	

SVHN

Model	Percentage of incorrectly predicted test examples				
	for a given number of labeled samples				
	500	1000	2000		
DGN [21]		36.02 ± 0.10	_		
Virtual Adversarial [22]	24.63				
Auxiliary Deep Generative Model [23]	22.86				
Skip Deep Generative Model [23]		$16.61 {\pm} 0.24$			
Our model	18.44 ± 4.8	8.11 ± 1.3	6.16 ± 0.58		
Ensemble of 10 of our models		5.88 ± 1.0			

(Salimans et al 2016)

Optimization and Games

Optimization: find a minimum:

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Game:

Player 1 controls $\boldsymbol{\theta}^{(1)}$

Player 2 controls $\boldsymbol{\theta}^{(2)}$

Player 1 wants to minimize $J^{(1)}(\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)})$

Player 2 wants to minimize $J^{(2)}(\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)})$

Depending on J functions, they may compete or cooperate.

Other Games in AI

- Robust optimization / robust control
 - for security/safety, e.g. resisting adversarial examples
- Domain-adversarial learning for domain adaptation
- Adversarial privacy
- Guided cost learning
- Predictability minimization

• ...

Conclusion

- GANs are generative models that use supervised learning to approximate an intractable cost function
- GANs may be useful for text-to-speech and for speech recognition, especially in the semi-supervised setting
- Finding Nash equilibria in high-dimensional, continuous, non-convex games is an important open research problem