Generative Adversarial
Networks (GANSs)

Ian Goodfellow, OpenAl Researc h Scientist
NIPS 2016 tutorial
Barcelona, 2016-12-4

UpenAl



(GGenerative Modeling

e Density estimation

le generation

i - .
- * :
- v A ‘ - i
o~ :
. |
+ . .
C -
B a :
>t
{ o= -
.
- . P~
y v
. P i o
iy - ~y
e
. - a
- € < -y
- e
* -
’ s -
" » ;
- g )
. y
. < .
> s

(Goodfellow 2016)

b . . L
- P 4 .
ol ﬁ.-.~

Training examples




Roadmap

Why study generative modeling?

How do generative models work?” How do GANs compare to
others?

How do GANs work?
Tips and tricks

Research frontiers

Combining GANs with other methods

(Goodfellow 2016)



Why study generative models?

e Excellent test of our ability to use high-dimensional,

complicated probability distributions
e Simulate possible futures for planning or simulated RL
e Missing data

e Semi-supervised learning
e Multi-modal outputs

e Realistic generation tasks

(Goodfellow 2016)



Next Video Frame Prediction

Ground Truth MSE Adversarial

(Lotter et al 2016)



Single Image Super-Resolution

bicubic SRResNet SRGAN
(23.44dB/0.7777)

(21.59dB/0.6423)

-

(Ledig et al 2016)

(Goodfellow 2016)



1GAN

x = + Generative Image Manipulation

youtube
(Zhu et al 2016)

(Goodfellow 2016)


https://www.youtube.com/watch?v=9c4z6YsBGQ0

Introspective Adversarial
Networks

— -

youtube

(Brock et al 2016)


https://www.youtube.com/watch?v=FDELBFSeqQs

Image to Image Translation

Ground truth

Input

Labels to Street Scene

input

output
output

eiI to Map

(Goodfellow 2016)

(Isola et al 2016)
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Maximum Likelihood
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Taxonomy of Generative Models

l Direct

Maximum Likelihood
/ \ / GAN

Explicit density Implicit density

N o

- - . Markov Chai
Tractable density | Approximate density ALROV LAl

. . GOSN
-Fully visible belief nets
_NADE N

MADE Variational | Markov Chain

-Pixel RNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA) (Goodellow 2016



Fully Visible Belief Nets

e Explicit formula based on chain (Frey et al, 1996)

rule:

pmodel( ) pmodel X1 Hpmodel(fpz ‘ L1yeonydg— 1

1=2 aﬂ.
%ﬂ'ﬂ

PlxelCNN elephants
e Generation not controlled by a (van den Ord et al 2016)
latent code

e Disadvantages:

e O(n) sample generation cost



Amazing quality
Sample generation slow

WaveNet

Output
Dilation = 8

Hidden Layer
Dviation = 4

Hidden Layer
Duation = 2

Hidden Layer
Dilation = 1

Input

Two minutes to synthesize

one second of audio

(Goodfellow 2016)



Change of Variables

y = g(z) = pz(x) = py(9(x))

e.g. Nonlinear ICA (Hyvérinen 1999)

det (

dg(x)

ox

Disadvantages:

64x64 ImageNet Samples
Real NVP (Dinh et al 2016)

invertible

)

- Transformation must be

- Latent dimension must

match visible dimension

(Goodfellow 2016)



Variational Autoencoder

(Kingma and Welling 2013, Rezende et al 2014)

log p(x) > log p()
Jqu logp(a: z)+ H(q)

CIFAR—lO Samples
(Kingma et al 2016)

— Dkuv (q(2)|lp(z | x))

Disadvantages:

-Not asymptotically
consistent unless ¢ is
perfect

-Samples tend to have lower

quality

(Goodfellow 2016)



Boltzmann Machines

p(x) = exp (~E(x. 2))

7 = ZZeXp  2))

e Partition function is intractable
e May be estimated with Markov chain methods

e Generating samples requires Markov chains too

(Goodfellow 2016)



(GANSs

Use a latent code

Asymptotically consistent (unlike variational
methods)

No Markov chains needed
Often regarded as producing the best samples

e No good way to quantify this

(Goodfellow 2016)
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Adversarial Nets Framework
D tries to make
D(G(z)) near 0,
) tries to be GG tries to make
( near 1 > D(G(z)) near 1
Differentiable
function D
x sampled from x sampled from
data model
leferentlable
function G

Input noise z )

(Goodfellow 2016)



Generator Network
r = G(z; H(G))

-Must be differentiable
- No invertibility requirement

@ - Trainable for any size of z

Some guarantees require z to have higher
dimension than z

- Can make z conditionally Gaussian given z but
need not do so

(Goodfellow 2016)



Training Procedure

o Use SGD-like algorithm of choice (Adam) on two
minibatches simultaneously:

A minibatch of training examples
e A minibatch of generated samples

e Optional: run £ steps of one player for every step of
the other player.

(Goodfellow 2016)



Minimax Game

L
I = =S Banpia log D(@) — 5

2
JG) — _ (D)

1

. log (1 — D (G(2)))

-Equilibrium is a saddle point of the discriminator loss

-Resembles Jensen-Shannon divergence

-Generator minimizes the log-probability of the discriminator

being correct

(Goodfellow 2016)



Exercise 1

. .
JP) = ~ 5 Eanpy, log D(@) — SEzlog (1 - D (G(2)))

JG) — _ (D)

e What is the solution to D(z) in terms of pdata and
?

Pgenerator !

e What assumptions are needed to obtain this

solution?”

(Goodfellow 2016)



Solution

e Assume both densities are nonzero everywhere

e If not, some input values z are never trained, so

some values of D(z) have undetermined behavior.

e Solve for where the functional derivatives are zero:

0
0D(x)

JP) =

(Goodfellow 2016)



Discriminator Strategy

Optimal D(x) for any pgata(@) and pmeodel () is always

pdata(m)
Pdata (37) = Pmodel (113)

Discriminator / Data
\ ;: Model
------------ whe /

distribution

D(x) =

Estimating this ratio

using supervised learning is

the key approximation

W T
mechanism used by GANS //// \\\

(Goodfellow 2016)



Non-Saturating Game

1 1
D) = =By, log D(@) — S, log (1 - D (G(2)))

1
JG) = —5Ezlog D (G(2))

-Equilibrium no longer describable with a single loss
-Generator maximizes the log-probability of the discriminator
being mistaken

-Heuristically motivated; generator can still learn even when

discriminator successfully rejects all generator samples

(Goodfellow 2016)



DCGAN Architecture

Most “deconvs”’ are batch normalized

256

N

1c'?4 . ' 16 Stride 2\'\5\
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Image

(Radford et al 2015)

(Goodfellow 2016)



DCGANS for LSUN Bedrooms

(Radford et al 2015)

(Goodfellow 2016)



Vector Space Arithmetic

Man
with glasses

Woman with Glasses

(Radford et al, 2015)

(Goodfellow 2016)



Is the divergence important?

q" = argmin, Dk (p||q) ¢" = argmin, Dk1.(q|/p)
— @ S = v
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Maximum likelihood Reverse KL

(Goodfellow et al 2016)

(Goodfellow 2016)



Moditying GANs to do
Maximum Likelihood

(D) _ _% 2 log D(x) — % . log (1 — D (G(2)))
7O = —E.exp (071 (D(G(2)))

When discriminator is optimal, the generator
oradient matches that of maximum likelihood

(“On Distinguishability Criteria for Estimating Generative
Models”, Goodfellow 2014, pg 5) S



Reducing GANs to RL

(Generator makes a sample

Discriminator evaluates a sample

Generator’s cost (negative reward) is a function of D(G(z2))
Note that generator’s cost does not include the data, z
Generator’s cost is always monotonically decreasing in D(G(2))

Different divergences change the location of the cost’s fastest

decrease

(Goodfellow 2016)



J(G)

Comparison of Generator Losses

5 '\ ! ! ! !
0 T
5L \‘
1O —  Minimax ]
_15 | — Non-saturating heuristic i
—— Maximum likelihood cost

—20 | |

0.0 0.2 0.4 0.6 0.8 1.0

D(G(2))

(Goodfellow 2014) (Gonion 2010



LLoss does not seem to explain

Takeaway: the approximation strategy

matters more than the loss Goodiellon 2016



Comparison to NCE, MLE

V(G, D) = Eyp,,,. log D(x) + E (log (1 — D(x)))

Jpgenerator
NCE
(Gutmann and MLE GAN
Hyvérinen 2010)
D D(x) _ pmodel(w) Neural
pmodel(w) + pgenerator(m) netWOI'k
GO&I Leal‘n pmodel Leal'l’l pgenerator
None (G is Copy Pmodel Gradient
(G update rule
fixed) parameters  descent on V
D update rule Gradient ascent on V

(“On Distinguishability Criteria...”, Goodfellow 2014)

(Goodfellow 2016)
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Labels improve subjective

sample quality

e Learning a conditional model p(y|z) often gives much

better samples from all classes than learning p(zx) does
(Denton et al 2015)

e Even just learning p(x,y) makes samples from p(x) look

much better to a human observer (Salimans et al 2016)

e Note: this defines three categories of models (no labels,
trained with labels, generating condition on labels)
that should not be compared directly to each other

(Goodfellow 2016)



One-sided label smoothing

e Default discriminator cost:

cross_entropy(1l., discriminator(data))
+ cross_entropy (0., discriminator(samples))

e One-sided label smoothed cost (Salimans et al
2016):

cross_entropy(.9, discriminator(data))
+ cross_entropy (0., discriminator(samples))

(Goodfellow 2016)



Do not smooth negative labels

cross_entropy(l.-alpha, discriminator(data))
+ cross_entropy(beta, discriminator(samples))

Reinforces current generator behavior

(1 o O‘)pdata(aj) + Bpmodel(m)

D(w) N pdata(w) + pmodel(w)




Benefits of label smoothing

e Good regularizer (Szegedy et al 2015)

e Does not reduce classification accuracy, only confidence

e Benefits specific to GANSs:

e Prevents discriminator from giving very large

ogradient signal to generator

e Prevents extrapolating to encourage extreme samples

(Goodfellow 2016)



Batch Norm

Given inputs X:{:c(l), x@), . x(m)}

Compute mean and standard deviation of features of X

Normalize features (subtract mean, divide by standard deviation)

Normalization operation is part of the graph

e Backpropagation computes the gradient through the

normalization

e This avoids wasting time repeatedly learning to undo the

normalization

(Goodfellow 2016)



Batch norm in G can cause

(Goodfellow 2016)




Reterence Batch Norm

Fix a reference batch R:{r(1 LT T
Given new inputs X:{x(l), T, ., T
Compute mean and standard deviation of features of R

e Note that though R does not change, the feature values change
when the parameters change

Normalize the features of X using the mean and standard deviation

from R

Every a:(i) is always treated the same, regardless of which other
examples appear in the minibatch

(Goodfellow 2016)



Virtual Batch Norm

Reference batch norm can overfit to the reference batch. A partial solution

1s virtual batch norm

1 2 m
Fix a reference batch R:{r( ), T( ), s T( >}
1 2 m
(Given new inputs X:{ZU( ), CU( ), . x( )}

For each x(l) in X:

e Construct a virtual batch V containing both x(l) and all of R

e Compute mean and standard deviation of features of V

e Normalize the features of x<1) using the mean and standard deviation

from V

(Goodfellow 2016)



Balancing G and D

Usually the discriminator “wins”

This is a good thing—the theoretical justifications are based on
assuming D is perfect

Usually D is bigger and deeper than G

Sometimes run D more often than G. Mixed results.
Do not try to limit D to avoid making it “too smart”
e Use non-saturating cost

e Use label smoothing

(Goodfellow 2016)
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Non-convergence

e Optimization algorithms often approach a saddle

point or local minimum rather than a global

minimum

e (GGame solving algorithms may not approach an

equilibrium at all

(Goodfellow 2016)



Exercise 2

e For scalar x and vy, consider the value function:

V(z,y) = zy
e Does this game have an equilibrium? Where is it?

e Comnsider the learning dynamics of simultaneous
ocradient descent with infinitesimal learning rate
(continuous time). Solve for the trajectory followed
by these dynamics.

% _ _%V(m(t),y(t))
gy 0

5 = 5V @0).y(0)

(Goodfellow 2016)



Solution

-
J.' 0 ? o i S
A
0.0~

This is the canonical example of 05~

. l .(?-/ £ «

a saddle point. 10¢e.

g
0.5'7{,
There is an equilibrium, at ‘r,,,
0.0}
r=0, y=0. |
~0.54
¢
} v
~1.0t/

(Goodfellow 2016)



Solution

e The gradient dynamics are:

ox

o7 —y(?)
Yy
i x(t)

e Differentiating the second equation, we obtain:

0%y  Ox
o o - YW

e We recognize that y(t) must be a sinusoid

(Goodfellow 2016)



Solution

e The dynamics are a circular orbit:
x(t) = x(0) cos(t) — y(0) sin(t)
y(t) = x(0) sin(t) + y(0) cos(t)

/__.

Discrete time / \

oradient descent |
can spiral o
outward for large ' |

step sizes \ /

(Goodfellow 2016)



Non-convergence in GANS

e Exploiting convexity in function space, GAN training is theoretically
guaranteed to converge if we can modity the density functions directly,
but:

e Instead, we modify G (sample generation function) and D (density

ratio), not densities
e We represent G and D as highly non-convex parametric functions

e “Oscillation”: can train for a very long time, generating very many

different categories of samples, without clearly generating better samples

e Mode collapse: most severe form of non-convergence

(Goodfellow 2016)



Mode Collapse

min max V(G, D) # max min V(G, D)

e [ in inner loop: convergence to correct distribution

e (G in inner loop: place all mass on most likely point

Target

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

(Metz et al 2016) S—



Reverse KL loss does not
explain mode collapse

e Other GAN losses also yield mode collapse

e Reverse KL loss prefers to fit as many modes as the
model can represent and no more; it does not prefer

fewer modes in general

e (GANSs often seem to collapse to far fewer modes

than the model can represent

(Goodfellow 2016)



Mode collapse causes low

output diversity

this small bird has a pink  this magnificent fellow is Key- GAN (Reed 2016b) This work
breast and crown, and black almost all black with a red _pﬂs_ A man in a orange JaCket_Wllh sunglasses and a hat ski down a hill.

primaries and secondaries. crest, and white cheek patch.

7

ThlS ﬂy is 1n black trunks and smmmmg underwater.

tenms laler in a blue iolo shirt is lookmi down at the ieen court

(Reed et al, submitted to
ICLR 2017)

the flower has petals that this white and yellow flower «
are bright pinkish purple have thin white petals and a X
with white stigma round yellow stamen .

(Reed et al 2016)

(Goodfellow 2016)



Minibatch Features

e Add minibatch features that c.

assity each example

by comparing it to other mem
(Salimans et al 2016)

hers of the minibatch

e Nearest-neighbor style features detect if a minibatch

contains samples that are too similar to each other

(Goodfellow 2016)



Minibatch GAN on CIFAR
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Minibatch GAN on ImageNet
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(Salimans et al 2016) (Gotlo 2010



Cherry-Picked Results




Problems with Counting

“<", !
.“0.'. ¢

N
(Goodfellow 2016)



Problems with Perspective




Problems with Global

Structure




'This one 1s real




Unrolled GANSs

e Backprop through £ updates of the discriminator to
prevent mode collapse:

» W 8 O O

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

(Metz et al 2016)

(Goodfellow 2016)



Evaluation

e There is not any single compelling way to evaluate a generative
model

e Models with good likelihood can produce bad samples

e Models with good samples can have bad likelihood

e There is not a good way to quantify how good samples are
e For GANSs, it is also hard to even estimate the likelihood

e See “A note on the evaluation of generative models,” Theis et al
2015, for a good overview

(Goodfellow 2016)



Discrete outputs

e (G must be differentiable
e Cannot be differentiable if output is discrete
e Possible workarounds:

 REINFORCE (Williams 1992)

e Concrete distribution (Maddison et al 2016) or Gumbel-
softmax (Jang et al 2016)

e Learn distribution over continuous embeddings, decode to
discrete

(Goodfellow 2016)



Supervised Discriminator

]
i
dog

Hidden

units

(Odena 2016, Salimans et al 2016) Goton 2010



Semi-Supervised Classification

MNIST (Permutation Invariant)

Model Number of incorrectly predicted test examples
for a given number of labeled samples
20 50 100 200
DGN [21] 333 £+ 14
Virtual Adversarial [22] 212
CatGAN [14] 191 £+ 10
Skip Deep Generative Model [23] 132 =7
Ladder network [24] 106 + 37
Aucxiliary Deep Generative Model [23] 96 + 2
Our model 1677 £ 452 221 += 136 93 + 6.5 90 + 4.2
Ensemble of 10 of our models 1134 + 445 142 4 96 86 £+ 5.6 81 + 4.3

(Salimans et al 2016) (Gonio 2010



Semi-Supervised Classification

CIFAR-10

Model Test error rate for
a given number of labeled samples
1000 2000 4000 8000
Ladder network [24] 20.404+0.47
CatGAN [14] 19.584+0.46
Our model 21.831+2.01 19.61+2.09 18.631+2.32 17.724+1.82

Ensemble of 10 of our models

19.2240.54 17.2540.66 15.5940.47 14.874+0.89

SVHN

Model Percentage of incorrectly predicted test examples
for a given number of labeled samples
500 1000 2000

DGN [21] 36.0240.10
Virtual Adversarial [22] 24.63
Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.614+0.24

Our model 18.44 4 4.8 8.11 £ 1.3 6.16 &= 0.58
Ensemble of 10 of our models 5.88 £ 1.0

(Salimans et al 2016) (Goodtilo 201



Learning interpretable latent codes /

controlling the generation process
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InfoGAN (Chen et al 2016)



RI, connections

e GANSs interpreted as actor-critic (Pfau and Vinyals
2016)

e GANSs as inverse reinforcement learning (Finn et al
2016)

e GANSs for imitation learning (Ho and Ermon 2016)

(Goodfellow 2016)



Finding equilibria in games

e Simultaneous SGD on two players costs may not
converge to a Nash equilibrium

e In finite spaces, fictitious play provides a better
algorithm

e What to do in continuous spaces?

e Unrolling is an expensive solution; is there a

cheap one”

(Goodfellow 2016)



Other Games in Al

Board games (checkers, chess, Go, etc.)

Robust optimization / robust control

o for security/safety, e.g. resisting adversarial examples
Domain-adversarial learning for domain adaptation
Adversarial privacy

Guided cost learning

(Goodfellow 2016)



Exercise 3

In this exercise, we will derive the maximum likelihood cost for

(GANSs.

We want to solve for f(z), a cost function to be applied to every
sample from the generator:

(@) Lo, [ ()

Show the following:

0 0
_ (G) — K, S
89‘] :UNpgf(ZE) ae logpg(:[;)

What should f(z) be?

(Goodfellow 2016)



Solution
0,

0
e To show that — J(&) = ‘?a:fvpgf( )39 log py ()

00

e Eixpand the expectation to an integral

0 0
SgEanf (@) = 55 [ (@) f(@)da

e Assume that Leibniz’s rule may be used

[ @) spa(@ia

e Use the identity

0 5,
@pg(w) = py(x )ae log p, ()



Solution

O 0
W. k _ (G) — K
e now know ] onpy [ () 57108 Py ()

L 9,
The KL gradient is _g, = Y log py ()

We can do an importance sampling trick
pdata(x)
flx) =
Pg()

Note that we must copy the density p,or the
derivatives will double-count

(Goodfellow 2016)



Solution

pdata(x)
pg()

e We want J(x) =

pdata(m)

e We know that D(x) = o(a(z)) = Pdata(x) + py(x)

e By algebra f(z) = —exp(a(x))
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Plug and Play Generative
Models

 New state of the art generative model (Nguyen et al
2016) released days before NIPS

e Generates 227x227 realistic images from all

ImageNet classes

e Combines adversarial training, moment matching,

denoising autoencoders, and Langevin sampling

(Goodfellow 2016)



PPGN Samples

volcano

(Nguyen et al 2016)

(Goodfellow 2016)



PPGN for caption to image

oranges on a table next to a Ilquor bottle

(Nguyen et al 2016)

(Goodfellow 2016)



Basic 1dea

e Langevin sampling repeatedly adds noise and
gradient of log p(z,y) to generate samples (Markov
chain)

e Denoising autoencoders estimate the required
osradient

e Use a special denoising autoencoder that has been
trained with multiple losses, including a GAN loss,
to obtain best results

(Goodfellow 2016)



Sampling without class
gradient
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GAN loss is a key ingredient

Raw data Reconstruction Reconstruction

by PPGN by PPGN

without GAN
Images from Nguyen et al 2016

First observed by Dosovitskiy et al 2016 (Goodilow 2016



Conclusion

GANs are generative models that use supervised learning to

approximate an intractable cost function

GANSs can simulate many cost functions, including the one

used for maximum likelihood

Finding Nash equilibria in high-dimensional, continuous, non-

convex games 1s an important open research problem

GANs are a key ingredient of PPGNs, which are able to
generate compelling high resolution samples from diverse

image classes

(Goodfellow 2016)



