
Generative Adversarial
Networks (GANs)

Ian Goodfellow, OpenAI Research Scientist
NIPS 2016 tutorial

Barcelona, 2016-12-4

(Goodfellow 2016)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples

(Goodfellow 2016)

Roadmap
• Why study generative modeling?

• How do generative models work? How do GANs compare to
others?

• How do GANs work?

• Tips and tricks

• Research frontiers

• Combining GANs with other methods

(Goodfellow 2016)

Why study generative models?
• Excellent test of our ability to use high-dimensional,

complicated probability distributions

• Simulate possible futures for planning or simulated RL

• Missing data

• Semi-supervised learning

• Multi-modal outputs

• Realistic generation tasks

(Goodfellow 2016)

Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)

would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can

545

(Lotter et al 2016)

(Goodfellow 2016)

Single Image Super-Resolution

(Ledig et al 2016)

(Goodfellow 2016)

iGAN

youtube

(Zhu et al 2016)

https://www.youtube.com/watch?v=9c4z6YsBGQ0

(Goodfellow 2016)

Introspective Adversarial
Networks

youtube

(Brock et al 2016)

https://www.youtube.com/watch?v=FDELBFSeqQs

(Goodfellow 2016)

Image to Image Translation

Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day!night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges!handbags, compared to ground truth.

(Isola et al 2016)

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu

Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.

1

ar
X

iv
:1

61
1.

07
00

4v
1

 [c
s.C

V
]

21
 N

ov
 2

01
6

(Goodfellow 2016)

Roadmap
• Why study generative modeling?

• How do generative models work? How do GANs compare to
others?

• How do GANs work?

• Tips and tricks

• Research frontiers

• Combining GANs with other methods

(Goodfellow 2016)

Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓

⇤
= argmax

✓
E
x⇠pdata log pmodel

(x | ✓)

1

(Goodfellow 2016)

Taxonomy of Generative Models

Maximum Likelihood

Explicit density Implicit density

…

Tractable density
-Fully visible belief nets
 -NADE
 -MADE
 -PixelRNN
-Change of variables
models (nonlinear ICA)

Approximate density

Variational
Variational autoencoder

Markov Chain
Boltzmann machine

Markov Chain

Direct

GSN

GAN

(Goodfellow 2016)

Fully Visible Belief Nets
• Explicit formula based on chain

rule:

• Disadvantages:

• O(n) sample generation cost

• Generation not controlled by a
latent code

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓
E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p

model

(x) = p

model

(x

1

)

nY

i=2

p

model

(x

i

| x
1

, . . . , x

i�1

)

1

(Frey et al, 1996)

PixelCNN elephants
(van den Ord et al 2016)

(Goodfellow 2016)

WaveNet

Amazing quality
Sample generation slow Two minutes to synthesize

one second of audio

(Goodfellow 2016)

Change of Variables

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓
E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p

model

(x) = p

model

(x

1

)

nY

i=2

p

model

(x

i

| x
1

, . . . , x

i�1

)

Change of variables

y = g(x)) p

x

(x) = p

y

(g(x))

����det
✓
@g(x)

@x

◆����

1

Disadvantages:
- Transformation must be

invertible
- Latent dimension must

match visible dimension

64x64 ImageNet Samples
Real NVP (Dinh et al 2016)

e.g. Nonlinear ICA (Hyvärinen 1999)

(Goodfellow 2016)

Variational Autoencoder
zz

xx

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓
E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p
model

(x) = p
model

(x
1

)

nY

i=2

p
model

(x
i

| x
1

, . . . , x
i�1

)

Change of variables

y = g(x)) p
x

(x) = p
y

(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�D
KL

(q(z)kp(z | x))(1)

=Ez⇠q

log p(x, z) +H(q)(2)

1

(Kingma and Welling 2013, Rezende et al 2014)

CIFAR-10 samples
(Kingma et al 2016)

Disadvantages:
-Not asymptotically
consistent unless q is
perfect
-Samples tend to have lower
quality

(Goodfellow 2016)

Boltzmann Machines

• Partition function is intractable

• May be estimated with Markov chain methods

• Generating samples requires Markov chains too

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓

E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p
model

(x) = p
model

(x
1

)

nY

i=2

p
model

(x
i

| x
1

, . . . , x
i�1

)

Change of variables

y = g(x)) p
x

(x) = p
y

(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�D
KL

(q(z)kp(z | x))(1)

=E
z⇠q

log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =

X

x

X

z

exp (�E(x, z))(4)

1

(Goodfellow 2016)

GANs
• Use a latent code

• Asymptotically consistent (unlike variational
methods)

• No Markov chains needed

• Often regarded as producing the best samples

• No good way to quantify this

(Goodfellow 2016)

Roadmap
• Why study generative modeling?

• How do generative models work? How do GANs compare to
others?

• How do GANs work?

• Tips and tricks

• Research frontiers

• Combining GANs with other methods

(Goodfellow 2016)

Adversarial Nets Framework

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

(Goodfellow 2016)

Generator Network

zz

xx

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓

E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p
model

(x) = p
model

(x
1

)

nY

i=2

p
model

(x
i

| x
1

, . . . , x
i�1

)

Change of variables

y = g(x)) p
x

(x) = p
y

(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�D
KL

(q(z)kp(z | x))(1)

=E
z⇠q

log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =

X

x

X

z

exp (�E(x, z))(4)

Generator equation

x = G(z;✓

(G)

)

1

-Must be differentiable
- No invertibility requirement
- Trainable for any size of z
- Some guarantees require z to have higher

dimension than x
- Can make x conditionally Gaussian given z but

need not do so

(Goodfellow 2016)

Training Procedure
• Use SGD-like algorithm of choice (Adam) on two

minibatches simultaneously:

• A minibatch of training examples

• A minibatch of generated samples

• Optional: run k steps of one player for every step of
the other player.

(Goodfellow 2016)

Minimax Game

-Equilibrium is a saddle point of the discriminator loss
-Resembles Jensen-Shannon divergence
-Generator minimizes the log-probability of the discriminator
being correct

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓

E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p
model

(x) = p
model

(x
1

)

nY

i=2

p
model

(x
i

| x
1

, . . . , x
i�1

)

Change of variables

y = g(x)) p
x

(x) = p
y

(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�D
KL

(q(z)kp(z | x))(1)

=E
z⇠q

log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =

X

x

X

z

exp (�E(x, z))(4)

Generator equation

x = G(z;✓

(G)

)

Minimax

J (D)

= �1

2

E
x⇠pdata logD(x)� 1

2

E
z

log (1�D (G(z)))(5)

J (G)

= �J (D)

(6)

1

(Goodfellow 2016)

Exercise 1

• What is the solution to D(x) in terms of pdata and
pgenerator?

• What assumptions are needed to obtain this
solution?

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓

E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p
model

(x) = p
model

(x
1

)

nY

i=2

p
model

(x
i

| x
1

, . . . , x
i�1

)

Change of variables

y = g(x)) p
x

(x) = p
y

(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�D
KL

(q(z)kp(z | x))(1)

=E
z⇠q

log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =

X

x

X

z

exp (�E(x, z))(4)

Generator equation

x = G(z;✓

(G)

)

Minimax

J (D)

= �1

2

E
x⇠pdata logD(x)� 1

2

E
z

log (1�D (G(z)))(5)

J (G)

= �J (D)

(6)

1

(Goodfellow 2016)

Solution

• Assume both densities are nonzero everywhere

• If not, some input values x are never trained, so
some values of D(x) have undetermined behavior.

• Solve for where the functional derivatives are zero:
�

�D(x)
J (D) = 0

(Goodfellow 2016)

Discriminator Strategy

✓

⇤
= max

✓

1

m

mX

i=1

log p

⇣
x

(i)
; ✓

⌘

p(h, x) =

1

Z

p̃(h, x)

p̃(h, x) = exp (�E (h, x))

Z =

X

h,x

p̃(h, x)

d

d✓

i

log p(x) =

d

d✓

i

"
log

X

h

p̃(h, x)� logZ(✓)

#

d

d✓

i

logZ(✓) =

d

d✓i
Z(✓)

Z(✓)

p(x, h) = p(x | h(1)
)p(h

(1) | h(2)
) . . . p(h

(L�1) | h(L)
)p(h

(L)
)

d

d✓

i

log p(x) =

d

d✓i
p(x)

p(x)

p(x) =

X

h

p(x | h)p(h)

D(x) =

p

data

(x)

p

data

(x) + p

model

(x)

1

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Data
Model

distribution

Optimal D(x) for any p
data

(x) and p
model

(x) is always

z

x

Discriminator

Estimating this ratio
using supervised learning is

the key approximation
mechanism used by GANs

(Goodfellow 2016)

Non-Saturating Game

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓

⇤
= argmax

✓

E
x⇠pdata log pmodel

(x | ✓)

Fully-visible belief net

p
model

(x) = p
model

(x
1

)

nY

i=2

p
model

(x
i

| x
1

, . . . , x
i�1

)

Change of variables

y = g(x)) p
x

(x) = p
y

(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�D
KL

(q(z)kp(z | x))(1)

=E
z⇠q

log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =

X

x

X

z

exp (�E(x, z))(4)

Generator equation

x = G(z;✓

(G)

)

Minimax

J (D)

= �1

2

E
x⇠pdata logD(x)� 1

2

E
z

log (1�D (G(z)))(5)

J (G)

= �J (D)

(6)

Non-saturating

J (D)

= �1

2

E
x⇠pdata logD(x)� 1

2

E
z

log (1�D (G(z)))(7)

J (G)

= �1

2

E
z

logD (G(z))(8)

1

-Equilibrium no longer describable with a single loss
-Generator maximizes the log-probability of the discriminator
being mistaken
-Heuristically motivated; generator can still learn even when
discriminator successfully rejects all generator samples

(Goodfellow 2016)

DCGAN Architecture

(Radford et al 2015)

Most “deconvs” are batch normalized

(Goodfellow 2016)

DCGANs for LSUN Bedrooms

(Radford et al 2015)

(Goodfellow 2016)

Vector Space ArithmeticCHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

common is that one could imagine learning about each of them without having to

see all the configurations of all the others. Radford et al. (2015) demonstrated that
a generative model can learn a representation of images of faces, with separate
directions in representation space capturing different underlying factors of variation.
Figure 15.9 demonstrates that one direction in representation space corresponds
to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
fixed a priori. There is no need to have labels for the hidden unit classifiers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, so long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all of the configurations of the n � 1 other
features by examples covering all of these combinations of values. This form of
statistical separability is what allows one to generalize to new configurations of a
person’s features that have never been seen during training.

552

Man
with glasses

Man Woman

Woman with Glasses

(Radford et al, 2015)

(Goodfellow 2016)

Is the divergence important?

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

x

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

q⇤ = argmin
q

D
KL

(p�q)

p(x)

q⇤(x)

x

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

q⇤ = argmin
q

D
KL

(q�p)

p(x)

q⇤(x)

Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either D

KL

(pkq) or D
KL

(qkp). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing D

KL

(pkq). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing D

KL

(qkp). In this case, we select a q that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes of p. Here, we
illustrate the outcome when q is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.

76

(Goodfellow et al 2016)

Maximum likelihood Reverse KL

(Goodfellow 2016)

Modifying GANs to do
Maximum Likelihood

(“On Distinguishability Criteria for Estimating Generative
Models”, Goodfellow 2014, pg 5)

2 THE AUTHOR

Maximum likelihood Non-saturating

J (D)
= �1

2

E
x⇠pdata logD(x)� 1

2

E
z

log (1�D (G(z)))(9)

J (G)
= �1

2

E
z

exp

�
��1

(D (G(z)))

�
(10)

When discriminator is optimal, the generator
gradient matches that of maximum likelihood

(Goodfellow 2016)

Reducing GANs to RL
• Generator makes a sample

• Discriminator evaluates a sample

• Generator’s cost (negative reward) is a function of D(G(z))

• Note that generator’s cost does not include the data, x

• Generator’s cost is always monotonically decreasing in D(G(z))

• Different divergences change the location of the cost’s fastest
decrease

(Goodfellow 2016)

Comparison of Generator Losses

(Goodfellow 2014)

0.0 0.2 0.4 0.6 0.8 1.0

D(G(z))

�20

�15

�10

�5

0

5

J
(G

)

Minimax

Non-saturating heuristic

Maximum likelihood cost

(Goodfellow 2016)

Loss does not seem to explain
why GAN samples are sharp

KL

Reverse
KL

KL samples from LSUN

Takeaway: the approximation strategy
matters more than the loss

(Nowozin et al 2016)

(Goodfellow 2016)

NCE
(Gutmann and

Hyvärinen 2010)
MLE GAN

D Neural
network

Goal Learn pmodel Learn pgenerator

G update rule None (G is
fixed)

Copy pmodel
parameters

Gradient
descent on V

D update rule Gradient ascent on V

Comparison to NCE, MLE
V (G,D) = Ep

data

logD(x) + Ep
generator

(log (1�D(x)))

D(x) =
p

model

(x)

p

model

(x) + p

generator

(x)

(“On Distinguishability Criteria…”, Goodfellow 2014)

(Goodfellow 2016)

Roadmap
• Why study generative modeling?

• How do generative models work? How do GANs compare to
others?

• How do GANs work?

• Tips and tricks

• Research frontiers

• Combining GANs with other methods

(Goodfellow 2016)

Labels improve subjective
sample quality

• Learning a conditional model p(y|x) often gives much
better samples from all classes than learning p(x) does
(Denton et al 2015)

• Even just learning p(x,y) makes samples from p(x) look
much better to a human observer (Salimans et al 2016)

• Note: this defines three categories of models (no labels,
trained with labels, generating condition on labels)
that should not be compared directly to each other

(Goodfellow 2016)

One-sided label smoothing
• Default discriminator cost:

• One-sided label smoothed cost (Salimans et al
2016):

cross_entropy(1., discriminator(data))
+ cross_entropy(0., discriminator(samples))

cross_entropy(.9, discriminator(data))
+ cross_entropy(0., discriminator(samples))

(Goodfellow 2016)

Do not smooth negative labels
cross_entropy(1.-alpha, discriminator(data))

+ cross_entropy(beta, discriminator(samples))

D(x) =
(1� ↵)p

data

(x) + �p
model

(x)

p
data

(x) + p
model

(x)

Reinforces current generator behavior

(Goodfellow 2016)

Benefits of label smoothing
• Good regularizer (Szegedy et al 2015)

• Does not reduce classification accuracy, only confidence

• Benefits specific to GANs:

• Prevents discriminator from giving very large
gradient signal to generator

• Prevents extrapolating to encourage extreme samples

(Goodfellow 2016)

Batch Norm
• Given inputs X={x(1), x(2), .., x(m)}

• Compute mean and standard deviation of features of X

• Normalize features (subtract mean, divide by standard deviation)

• Normalization operation is part of the graph

• Backpropagation computes the gradient through the
normalization

• This avoids wasting time repeatedly learning to undo the
normalization

(Goodfellow 2016)

Batch norm in G can cause
strong intra-batch correlation

(Goodfellow 2016)

Reference Batch Norm
• Fix a reference batch R={r(1), r(2), .., r(m)}

• Given new inputs X={x(1), x(2), .., x(m)}

• Compute mean and standard deviation of features of R

• Note that though R does not change, the feature values change
when the parameters change

• Normalize the features of X using the mean and standard deviation
from R

• Every x(i) is always treated the same, regardless of which other
examples appear in the minibatch

(Goodfellow 2016)

Virtual Batch Norm
• Reference batch norm can overfit to the reference batch. A partial solution

is virtual batch norm

• Fix a reference batch R={r
(1)

, r
(2)

, .., r
(m)

}

• Given new inputs X={x
(1)

, x
(2)

, .., x
(m)

}

• For each x
(i)

 in X:

• Construct a virtual batch V containing both x
(i)

 and all of R

• Compute mean and standard deviation of features of V

• Normalize the features of x
(i)

 using the mean and standard deviation
from V

(Goodfellow 2016)

Balancing G and D
• Usually the discriminator “wins”

• This is a good thing—the theoretical justifications are based on
assuming D is perfect

• Usually D is bigger and deeper than G

• Sometimes run D more often than G. Mixed results.

• Do not try to limit D to avoid making it “too smart”

• Use non-saturating cost

• Use label smoothing

(Goodfellow 2016)

Roadmap
• Why study generative modeling?

• How do generative models work? How do GANs compare to
others?

• How do GANs work?

• Tips and tricks

• Research frontiers

• Combining GANs with other methods

(Goodfellow 2016)

Non-convergence

• Optimization algorithms often approach a saddle
point or local minimum rather than a global
minimum

• Game solving algorithms may not approach an
equilibrium at all

(Goodfellow 2016)

Exercise 2
• For scalar x and y, consider the value function:

• Does this game have an equilibrium? Where is it?

• Consider the learning dynamics of simultaneous
gradient descent with infinitesimal learning rate
(continuous time). Solve for the trajectory followed
by these dynamics.

V (x, y) = xy

@x

@t

= � @

@x

V (x(t), y(t))

@y

@t

=
@

@y

V (x(t), y(t))

(Goodfellow 2016)

Solution

This is the canonical example of
a saddle point.

There is an equilibrium, at
x = 0, y = 0.

(Goodfellow 2016)

Solution
• The gradient dynamics are:

• Differentiating the second equation, we obtain:

• We recognize that y(t) must be a sinusoid

@x

@t

= �y(t)

@y

@t

= x(t)

@

2
y

@t

2
=

@x

@t

= �y(t)

(Goodfellow 2016)

Solution
• The dynamics are a circular orbit:

x(t) = x(0) cos(t)� y(0) sin(t)

y(t) = x(0) sin(t) + y(0) cos(t)

Discrete time
gradient descent

can spiral
outward for large

step sizes

(Goodfellow 2016)

Non-convergence in GANs
• Exploiting convexity in function space, GAN training is theoretically

guaranteed to converge if we can modify the density functions directly,
but:

• Instead, we modify G (sample generation function) and D (density
ratio), not densities

• We represent G and D as highly non-convex parametric functions

• “Oscillation”: can train for a very long time, generating very many
different categories of samples, without clearly generating better samples

• Mode collapse: most severe form of non-convergence

(Goodfellow 2016)

Mode Collapse

• D in inner loop: convergence to correct distribution

• G in inner loop: place all mass on most likely point

min

G
max

D
V (G,D) 6= max

D
min

G
V (G,D)

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Metz et al 2016)

(Goodfellow 2016)

Reverse KL loss does not
explain mode collapse

• Other GAN losses also yield mode collapse

• Reverse KL loss prefers to fit as many modes as the
model can represent and no more; it does not prefer
fewer modes in general

• GANs often seem to collapse to far fewer modes
than the model can represent

(Goodfellow 2016)

Mode collapse causes low
output diversity

Generative Adversarial Text to Image Synthesis

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran REEDSCOT1 , AKATA2 , XCYAN1 , LLAJAN1

Bernt Schiele, Honglak Lee SCHIELE2 ,HONGLAK1

1 University of Michigan, Ann Arbor, MI, USA (UMICH.EDU)
2 Max Planck Institute for Informatics, Saarbrücken, Germany (MPI-INF.MPG.DE)

Abstract
Automatic synthesis of realistic images from text
would be interesting and useful, but current AI
systems are still far from this goal. However, in
recent years generic and powerful recurrent neu-
ral network architectures have been developed
to learn discriminative text feature representa-
tions. Meanwhile, deep convolutional generative
adversarial networks (GANs) have begun to gen-
erate highly compelling images of specific cat-
egories, such as faces, album covers, and room
interiors. In this work, we develop a novel deep
architecture and GAN formulation to effectively
bridge these advances in text and image model-
ing, translating visual concepts from characters
to pixels. We demonstrate the capability of our
model to generate plausible images of birds and
flowers from detailed text descriptions.

1. Introduction
In this work we are interested in translating text in the form
of single-sentence human-written descriptions directly into
image pixels. For example, “this small bird has a short,
pointy orange beak and white belly” or ”the petals of this
flower are pink and the anther are yellow”. The problem of
generating images from visual descriptions gained interest
in the research community, but it is far from being solved.

Traditionally this type of detailed visual information about
an object has been captured in attribute representations -
distinguishing characteristics the object category encoded
into a vector (Farhadi et al., 2009; Kumar et al., 2009;
Parikh & Grauman, 2011; Lampert et al., 2014), in partic-
ular to enable zero-shot visual recognition (Fu et al., 2014;
Akata et al., 2015), and recently for conditional image gen-
eration (Yan et al., 2015).

While the discriminative power and strong generalization

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

this small bird has a pink
breast and crown, and black
primaries and secondaries.

the flower has petals that
are bright pinkish purple
with white stigma

this magnificent fellow is
almost all black with a red
crest, and white cheek patch.

this white and yellow flower
have thin white petals and a
round yellow stamen

Figure 1. Examples of generated images from text descriptions.
Left: captions are from zero-shot (held out) categories, unseen
text. Right: captions are from the training set.

properties of attribute representations are attractive, at-
tributes are also cumbersome to obtain as they may require
domain-specific knowledge. In comparison, natural lan-
guage offers a general and flexible interface for describing
objects in any space of visual categories. Ideally, we could
have the generality of text descriptions with the discrimi-
native power of attributes.

Recently, deep convolutional and recurrent networks for
text have yielded highly discriminative and generaliz-
able (in the zero-shot learning sense) text representations
learned automatically from words and characters (Reed
et al., 2016). These approaches exceed the previous state-
of-the-art using attributes for zero-shot visual recognition
on the Caltech-UCSD birds database (Wah et al., 2011),
and also are capable of zero-shot caption-based retrieval.
Motivated by these works, we aim to learn a mapping di-
rectly from words and characters to image pixels.

To solve this challenging problem requires solving two sub-
problems: first, learn a text feature representation that cap-
tures the important visual details; and second, use these fea-

ar
X

iv
:1

60
5.

05
39

6v
2

 [c
s.N

E]
 5

 Ju
n

20
16

(Reed et al 2016)

(Reed et al, submitted to
ICLR 2017)

(Goodfellow 2016)

Minibatch Features

• Add minibatch features that classify each example
by comparing it to other members of the minibatch
(Salimans et al 2016)

• Nearest-neighbor style features detect if a minibatch
contains samples that are too similar to each other

(Goodfellow 2016)

Minibatch GAN on CIFAR

Training Data Samples
(Salimans et al 2016)

(Goodfellow 2016)

Minibatch GAN on ImageNet

(Salimans et al 2016)

(Goodfellow 2016)

Cherry-Picked Results

(Goodfellow 2016)

Problems with Counting

(Goodfellow 2016)

Problems with Perspective

(Goodfellow 2016)

Problems with Global
Structure

(Goodfellow 2016)

This one is real

(Goodfellow 2016)

Unrolled GANs

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Metz et al 2016)

• Backprop through k updates of the discriminator to
prevent mode collapse:

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Goodfellow 2016)

Evaluation
• There is not any single compelling way to evaluate a generative

model

• Models with good likelihood can produce bad samples

• Models with good samples can have bad likelihood

• There is not a good way to quantify how good samples are

• For GANs, it is also hard to even estimate the likelihood

• See “A note on the evaluation of generative models,” Theis et al
2015, for a good overview

(Goodfellow 2016)

Discrete outputs
• G must be differentiable

• Cannot be differentiable if output is discrete

• Possible workarounds:

• REINFORCE (Williams 1992)

• Concrete distribution (Maddison et al 2016) or Gumbel-
softmax (Jang et al 2016)

• Learn distribution over continuous embeddings, decode to
discrete

(Goodfellow 2016)

Supervised Discriminator

Input

Real

Hidden
units

Fake

Input

Real
dog

Hidden
units

FakeReal cat

(Odena 2016, Salimans et al 2016)

(Goodfellow 2016)

Semi-Supervised Classification

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

Figure 3: (Left) samples generated by model dur-
ing semi-supervised training. Samples can be
clearly distinguished from images coming from
MNIST dataset. (Right) Samples generated with
minibatch discrimination. Samples are com-
pletely indistinguishable from dataset images.

The MNIST dataset contains 60, 000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-
tion [20] and add Gaussian noise to the output
of each layer of the discriminator. Table 1 sum-
marizes our results.

Samples generated by the generator during
semi-supervised learning using feature match-
ing (Section 3.1) do not look visually appealing
(left Fig. 3). By using minibatch discrimination
instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing. Similarly, researchers in our institution were not able to find any artifacts that would al-
low them to distinguish samples. However, semi-supervised learning with minibatch discrimination
does not produce as good a classifier as does feature matching.

Model Number of incorrectly predicted test examples
for a given number of labeled samples

20 50 100 200

DGN [21] 333 ± 14

Virtual Adversarial [22] 212
CatGAN [14] 191 ± 10

Skip Deep Generative Model [23] 132 ± 7

Ladder network [24] 106 ± 37

Auxiliary Deep Generative Model [23] 96 ± 2

Our model 1677 ± 452 221 ± 136 93 ± 6.5 90 ± 4.2

Ensemble of 10 of our models 1134 ± 445 142 ± 96 86 ± 5.6 81 ± 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

6.2 CIFAR-10

Model Test error rate for
a given number of labeled samples

1000 2000 4000 8000

Ladder network [24] 20.40±0.47

CatGAN [14] 19.58±0.46

Our model 21.83±2.01 19.61±2.09 18.63±2.32 17.72±1.82

Ensemble of 10 of our models 19.22±0.54 17.25±0.66 15.59±0.47 14.87±0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

CIFAR-10 is a small, well studied dataset of 32 ⇥ 32 natural images. We use this data set to study
semi-supervised learning, as well as to examine the visual quality of samples that can be achieved.
For the discriminator in our GAN we use a 9 layer deep convolutional network with dropout and
weight normalization. The generator is a 4 layer deep CNN with batch normalization. Table 2
summarizes our results on the semi-supervised learning task.

6

(Salimans et al 2016)

MNIST (Permutation Invariant)

(Goodfellow 2016)

Semi-Supervised Classification

(Salimans et al 2016)

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

Figure 3: (Left) samples generated by model dur-
ing semi-supervised training. Samples can be
clearly distinguished from images coming from
MNIST dataset. (Right) Samples generated with
minibatch discrimination. Samples are com-
pletely indistinguishable from dataset images.

The MNIST dataset contains 60, 000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-
tion [20] and add Gaussian noise to the output
of each layer of the discriminator. Table 1 sum-
marizes our results.

Samples generated by the generator during
semi-supervised learning using feature match-
ing (Section 3.1) do not look visually appealing
(left Fig. 3). By using minibatch discrimination
instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing. Similarly, researchers in our institution were not able to find any artifacts that would al-
low them to distinguish samples. However, semi-supervised learning with minibatch discrimination
does not produce as good a classifier as does feature matching.

Model Number of incorrectly predicted test examples
for a given number of labeled samples

20 50 100 200

DGN [21] 333 ± 14

Virtual Adversarial [22] 212
CatGAN [14] 191 ± 10

Skip Deep Generative Model [23] 132 ± 7

Ladder network [24] 106 ± 37

Auxiliary Deep Generative Model [23] 96 ± 2

Our model 1677 ± 452 221 ± 136 93 ± 6.5 90 ± 4.2

Ensemble of 10 of our models 1134 ± 445 142 ± 96 86 ± 5.6 81 ± 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

6.2 CIFAR-10

Model Test error rate for
a given number of labeled samples

1000 2000 4000 8000

Ladder network [24] 20.40±0.47

CatGAN [14] 19.58±0.46

Our model 21.83±2.01 19.61±2.09 18.63±2.32 17.72±1.82

Ensemble of 10 of our models 19.22±0.54 17.25±0.66 15.59±0.47 14.87±0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

CIFAR-10 is a small, well studied dataset of 32 ⇥ 32 natural images. We use this data set to study
semi-supervised learning, as well as to examine the visual quality of samples that can be achieved.
For the discriminator in our GAN we use a 9 layer deep convolutional network with dropout and
weight normalization. The generator is a 4 layer deep CNN with batch normalization. Table 2
summarizes our results on the semi-supervised learning task.

6

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Model Percentage of incorrectly predicted test examples
for a given number of labeled samples

500 1000 2000

DGN [21] 36.02±0.10

Virtual Adversarial [22] 24.63

Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.61±0.24

Our model 18.44 ± 4.8 8.11 ± 1.3 6.16 ± 0.58

Ensemble of 10 of our models 5.88 ± 1.0

Figure 5: (Left) Error rate on SVHN. (Right) Samples from the generator for SVHN.

6.4 ImageNet
We tested our techniques on a dataset of unprecedented scale: 128 ⇥ 128 images from the
ILSVRC2012 dataset with 1,000 categories. To our knowledge, no previous publication has ap-
plied a generative model to a dataset with both this large of a resolution and this large a number
of object classes. The large number of object classes is particularly challenging for GANs due to
their tendency to underestimate the entropy in the distribution. We extensively modified a publicly
available implementation of DCGANs2 using TensorFlow [26] to achieve high performance, using
a multi-GPU implementation. DCGANs without modification learn some basic image statistics and
generate contiguous shapes with somewhat natural color and texture but do not learn any objects.
Using the techniques described in this paper, GANs learn to generate objects that resemble animals,
but with incorrect anatomy. Results are shown in Fig. 6.

Figure 6: Samples generated from the ImageNet dataset. (Left) Samples generated by a DCGAN.
(Right) Samples generated using the techniques proposed in this work. The new techniques enable
GANs to learn recognizable features of animals, such as fur, eyes, and noses, but these features are
not correctly combined to form an animal with realistic anatomical structure.

7 Conclusion

Generative adversarial networks are a promising class of generative models that has so far been
held back by unstable training and by the lack of a proper evaluation metric. This work presents
partial solutions to both of these problems. We propose several techniques to stabilize training
that allow us to train models that were previously untrainable. Moreover, our proposed evaluation
metric (the Inception score) gives us a basis for comparing the quality of these models. We apply
our techniques to the problem of semi-supervised learning, achieving state-of-the-art results on a
number of different data sets in computer vision. The contributions made in this work are of a
practical nature; we hope to develop a more rigorous theoretical understanding in future work.

2https://github.com/carpedm20/DCGAN-tensorflow

8

CIFAR-10

SVHN

(Goodfellow 2016)

Learning interpretable latent codes /
controlling the generation process

InfoGAN (Chen et al 2016)

(Goodfellow 2016)

RL connections

• GANs interpreted as actor-critic (Pfau and Vinyals
2016)

• GANs as inverse reinforcement learning (Finn et al
2016)

• GANs for imitation learning (Ho and Ermon 2016)

(Goodfellow 2016)

Finding equilibria in games
• Simultaneous SGD on two players costs may not

converge to a Nash equilibrium

• In finite spaces, fictitious play provides a better
algorithm

• What to do in continuous spaces?

• Unrolling is an expensive solution; is there a
cheap one?

(Goodfellow 2016)

Other Games in AI
• Board games (checkers, chess, Go, etc.)

• Robust optimization / robust control

• for security/safety, e.g. resisting adversarial examples

• Domain-adversarial learning for domain adaptation

• Adversarial privacy

• Guided cost learning

• …

(Goodfellow 2016)

Exercise 3
• In this exercise, we will derive the maximum likelihood cost for

GANs.

• We want to solve for f(x), a cost function to be applied to every
sample from the generator:

• Show the following:

• What should f(x) be?

J (G) = E
x⇠pgf(x)

@

@✓

J

(G)
= E

x⇠pgf(x)

@

@✓

log p

g

(x)

(Goodfellow 2016)

Solution
• To show that

• Expand the expectation to an integral

• Assume that Leibniz’s rule may be used

• Use the identity

@

@✓

J

(G)
= E

x⇠pgf(x)

@

@✓

log p

g

(x)

@

@✓
E
x⇠pgf(x) =

@

@✓

Z
pg(x)f(x)dx

Z
f(x)

@

@✓
pg(x)dx

@

@✓
pg(x) = pg(x)

@

@✓
log pg(x)

(Goodfellow 2016)

Solution
• We now know

• The KL gradient is

• We can do an importance sampling trick

• Note that we must copy the density pg or the
derivatives will double-count

@

@✓

J

(G)
= E

x⇠pgf(x)

@

@✓

log p

g

(x)

�E
x⇠pdata

@

@✓
log pg(x)

f(x) = �pdata(x)

pg(x)

(Goodfellow 2016)

Solution

• We want

• We know that

• By algebra

f(x) = �pdata(x)

pg(x)

D(x) = �(a(x)) =
pdata(x)

pdata(x) + pg(x)

f(x) = � exp(a(x))

(Goodfellow 2016)

Roadmap
• Why study generative modeling?

• How do generative models work? How do GANs
compare to others?

• How do GANs work?

• Tips and tricks

• Combining GANs with other methods

(Goodfellow 2016)

Plug and Play Generative
Models

• New state of the art generative model (Nguyen et al
2016) released days before NIPS

• Generates 227x227 realistic images from all
ImageNet classes

• Combines adversarial training, moment matching,
denoising autoencoders, and Langevin sampling

(Goodfellow 2016)

PPGN Samples

Plug & Play Generative Networks:

Conditional Iterative Generation of Images in Latent Space

Anh Nguyen
University of Wyoming
anh.ng8@gmail.com

Jason Yosinski
Geometric Intelligence

jason@geometric.ai

Yoshua Bengio
Montreal Institute for Learning Algorithms
yoshua.umontreal@gmail.com

Alexey Dosovitskiy
University of Freiburg

dosovits@cs.uni-freiburg.de

Jeff Clune
University of Wyoming

jeffclune@uwyo.edu

Abstract

Generating high-resolution, photo-realistic images has
been a long-standing goal in machine learning. Recently,
Nguyen et al. [36] showed one interesting way to synthesize
novel images by performing gradient ascent in the latent
space of a generator network to maximize the activations
of one or multiple neurons in a separate classifier network.
In this paper we extend this method by introducing an addi-
tional prior on the latent code, improving both sample qual-
ity and sample diversity, leading to a state-of-the-art gen-
erative model that produces high quality images at higher
resolutions (227 ⇥ 227) than previous generative models,
and does so for all 1000 ImageNet categories. In addition,
we provide a unified probabilistic interpretation of related
activation maximization methods and call the general class
of models “Plug and Play Generative Networks.” PPGNs
are composed of 1) a generator network G that is capable
of drawing a wide range of image types and 2) a replace-
able “condition” network C that tells the generator what
to draw. We demonstrate the generation of images condi-
tioned on a class (when C is an ImageNet or MIT Places
classification network) and also conditioned on a caption
(when C is an image captioning network). Our method also
improves the state of the art of Multifaceted Feature Visual-
ization [39], which generates the set of synthetic inputs that
activate a neuron in order to better understand how deep
neural networks operate. Finally, we show that our model
performs reasonably well at the task of image inpainting.
While image models are used in this paper, the approach is
modality-agnostic and can be applied to many types of data.

1. Introduction

Recent years have seen generative models that are in-
creasingly capable of synthesizing diverse, realistic images

Figure 1: Images synthetically generated by Plug and Play
Generative Networks at high-resolution (227x227) for four
ImageNet classes. Not only are many images nearly photo-
realistic, but samples within a class are diverse.

that capture both the fine-grained details and global coher-
ence of natural images [52, 26, 9, 15, 42, 23]. However,
many important open challenges remain, including (1) pro-
ducing photo-realistic images at high resolutions [29], (2)
training generators that can produce a wide variety of im-
ages (e.g. all 1000 ImageNet classes) instead of only one or
a few types (e.g. faces or bedrooms [42]), and (3) producing
a diversity of samples that match the diversity in the dataset
instead of modeling only a subset of the data distribution

1

ar
X

iv
:1

61
2.

00
00

5v
1

 [c
s.C

V
]

30
 N

ov
 2

01
6

(Nguyen et al 2016)

(Goodfellow 2016)

PPGN for caption to image

Noiseless Joint PPGN-h. We sample from this model
with (✏

1

, ✏

2

, ✏

3

) = (10

�5

, 1, 10

�17

) following the same up-
date rule in Eq. 11 (we need noise to make it a proper sam-
pling procedure, but found that infinitesimally small noise
produces better and more diverse images, which is to be
expected given that the DAE in this variant was trained
without noise). Interestingly, the chain mixes substantially
faster than DGN-AM (Figs. S13e & S13b) although the
only difference between two treatments is the existence of
the learned p(h) prior. Overall, the Noiseless Joint PPGN-
h produces a large amount of sample diversity (Fig. 2).
Compared to the Joint PPGN-h, the Noiseless Joint PPGN-
h produces better image quality, but mixes slightly slower
(Figs. S13 & S14). Sweeping across the noise levels dur-
ing sampling, we noted that larger noise amounts often re-
sults in worse image quality, but not necessarily faster mix-
ing speed (Fig. S15). Also, as expected, a small ✏

1

mul-
tiplier makes the chain mix faster, and a large one pulls
the samples towards being generic instead of class-specific
(Fig. S24).

Evaluating image generative models is challenging, and
there is not yet a commonly accepted quantitative perfor-
mance measure [51]. Here, we qualitatively evaluate sam-
ple diversity of the Noiseless Joint PPGN-h variant by run-
ning 10 sampling chains, each for 200 steps, to produce
2000 samples, and filtering out samples with class probabil-
ity of less than 0.97. From the remaining, we randomly pick
400 samples and plot them in a grid t-SNE [54] (Figs. S12
& S11). More examples for the reader’s evaluation of sam-
ple quality and diversity are provided in Figs. S22 & S23.
To better observe the mixing speed, we show videos of sam-
pling chains (with one sample per frame; no samples filtered
out) from within classes and between 10 different classes at
https://goo.gl/36S0Dy.

4. Additional results

In this section, we take the noiseless PPGN model and
demonstrate its capabilities on several different tasks.

4.1. Generating images with different condition

networks

A compelling property that makes PPGN different from
other existing generative models is that one can “plug and
play” with different prior and condition components (as
shown in Eq. 2) and ask the model to perform new tasks,
including challenging the generator to produce images that
it has never seen before. Here, we demonstrate this feature
by replacing the p(y|x) component with different networks.

Generating images conditioned on classes

Above we showed that PPGN could generate a diversity
of high quality samples for ImageNet classes (Figs. 1 & 2
& Sec. 3.5). Here, we test whether the generator G within

Figure 4: Images synthesized conditioned on MIT Places
[62] classes instead of ImageNet classes.

the PPGN can generalize to new types of images that it has
never seen before. Specifically, we sample with a differ-
ent p(y|x) model: an AlexNet DNN [25] trained to clas-
sify 205 categories of scene images from the MIT Places
dataset [62]. Similar to DGN-AM [36], the PPGN generates
realistic-looking images for classes that the generator was
never trained on, such as “alley” or “hotel room” (Fig. 4).
Side-by-side samples produced by DGN-AM and PPGN are
shown in Fig. S17.

Generating images conditioned on captions

Figure 5: Images synthesized to match a user description.
A PPGN containing the image captioning model from [8]
can generate reasonable images that differ based on user-
provided captions (e.g. red car vs. blue car, oranges vs.
a pile of oranges). For each caption, we show 3 images
synthesized starting from random initializations (more in
Fig. S19).

Instead of conditioning on classes, we can also condition
the image generation on a caption (Fig. 3g). Here, we swap
in an image-captioning recurrent network (called LRCN)
from [8] that was trained on the MS COCO dataset [31] to
predict a caption y given an image x. Specifically, LRCN is
a two-layer LSTM network that generates captions condi-
tioned on features extracted from the output softmax layer
of AlexNet [25].

7

(Nguyen et al 2016)

(Goodfellow 2016)

Basic idea
• Langevin sampling repeatedly adds noise and

gradient of log p(x,y) to generate samples (Markov
chain)

• Denoising autoencoders estimate the required
gradient

• Use a special denoising autoencoder that has been
trained with multiple losses, including a GAN loss,
to obtain best results

(Goodfellow 2016)

Sampling without class
gradient

(Nguyen et al 2016)

(Goodfellow 2016)

GAN loss is a key ingredient

(a) Real images

(b) Joint PPGN-h (Limg + Lh1 + Lh + LGAN)

(c) LGAN removed (Limg + Lh1 + Lh)

(d) Lh1 removed: Limg + Lh + LGAN

(e) Lh removed: Limg + Lh1 + LGAN

Figure S8: A comparison of images produced by different generators G, each trained with a different loss combination
(below each image). L

img

, L
h1 , and L

h

are L

2

reconstruction losses respectively in the pixel (x), pool5 feature (h
1

) and fc6

feature (h) space. G is trained to map h ! x, i.e. reconstructing images from fc6 features. In the Joint PPGN-h treatment
(Sec. 3.4), G is trained with a combination of 4 losses (panel b). Here, we perform an ablation study on this loss combination
to understand the effect of each loss, and find a combination that produces the best image quality. We found that removing the
GAN loss yields blurry results (panel c). The Noiseless Joint PPGN-h variant (Sec. 3.5) is trained with the loss combination
that produces the best image quality (panel e). Compared to pool5, fc6 feature matching loss often produce the worse image
quality because it is effectively encouraging generated images to match the high-level abstract statistics of real images instead
of low-level statistics [16]. Our result is in consistent with Dosovitskiy & Brox [9].

15

(a) Real images

(b) Joint PPGN-h (Limg + Lh1 + Lh + LGAN)

(c) LGAN removed (Limg + Lh1 + Lh)

(d) Lh1 removed: Limg + Lh + LGAN

(e) Lh removed: Limg + Lh1 + LGAN

Figure S8: A comparison of images produced by different generators G, each trained with a different loss combination
(below each image). L

img

, L
h1 , and L

h

are L

2

reconstruction losses respectively in the pixel (x), pool5 feature (h
1

) and fc6

feature (h) space. G is trained to map h ! x, i.e. reconstructing images from fc6 features. In the Joint PPGN-h treatment
(Sec. 3.4), G is trained with a combination of 4 losses (panel b). Here, we perform an ablation study on this loss combination
to understand the effect of each loss, and find a combination that produces the best image quality. We found that removing the
GAN loss yields blurry results (panel c). The Noiseless Joint PPGN-h variant (Sec. 3.5) is trained with the loss combination
that produces the best image quality (panel e). Compared to pool5, fc6 feature matching loss often produce the worse image
quality because it is effectively encouraging generated images to match the high-level abstract statistics of real images instead
of low-level statistics [16]. Our result is in consistent with Dosovitskiy & Brox [9].

15

(a) Real images

(b) Joint PPGN-h (Limg + Lh1 + Lh + LGAN)

(c) LGAN removed (Limg + Lh1 + Lh)

(d) Lh1 removed: Limg + Lh + LGAN

(e) Lh removed: Limg + Lh1 + LGAN

Figure S8: A comparison of images produced by different generators G, each trained with a different loss combination
(below each image). L

img

, L
h1 , and L

h

are L

2

reconstruction losses respectively in the pixel (x), pool5 feature (h
1

) and fc6

feature (h) space. G is trained to map h ! x, i.e. reconstructing images from fc6 features. In the Joint PPGN-h treatment
(Sec. 3.4), G is trained with a combination of 4 losses (panel b). Here, we perform an ablation study on this loss combination
to understand the effect of each loss, and find a combination that produces the best image quality. We found that removing the
GAN loss yields blurry results (panel c). The Noiseless Joint PPGN-h variant (Sec. 3.5) is trained with the loss combination
that produces the best image quality (panel e). Compared to pool5, fc6 feature matching loss often produce the worse image
quality because it is effectively encouraging generated images to match the high-level abstract statistics of real images instead
of low-level statistics [16]. Our result is in consistent with Dosovitskiy & Brox [9].

15

Raw data Reconstruction
by PPGN

Reconstruction
by PPGN

without GAN
Images from Nguyen et al 2016

First observed by Dosovitskiy et al 2016

(Goodfellow 2016)

Conclusion
• GANs are generative models that use supervised learning to

approximate an intractable cost function

• GANs can simulate many cost functions, including the one
used for maximum likelihood

• Finding Nash equilibria in high-dimensional, continuous, non-
convex games is an important open research problem

• GANs are a key ingredient of PPGNs, which are able to
generate compelling high resolution samples from diverse
image classes

