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Speculation on Three Topics

e Can we build a generative adversarial model of the

posterior over parameters?
o Adversarial variants of variational Bayes

e Can Bayesian modeling solve adversarial examples?

(Goodfellow 2016)



(GGenerative Modeling

e Density estimation

le generation
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Training examples




Adversarial Nets Framework
D tries to make
D(G(z)) near 0,
) tries to be GG tries to make
( near 1 > D(G(z)) near 1
Differentiable
function D
x sampled from x sampled from
data model
leferentlable
function G

Input noise z )
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Minimax Game

L
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. log (1 — D (G(2)))

-Equilibrium is a saddle point of the discriminator loss

-Resembles Jensen-Shannon divergence

-Generator minimizes the log-probability of the discriminator

being correct

(Goodfellow 2016)



Discriminator Strategy

Optimal D(x) for any pgata(@) and pmeodel () is always

pdata(m)
Pdata (37) = Pmodel (113)

Discriminator / Data
\ ;: Model
------------ whe /

distribution

D(x) =

Estimating this ratio

using supervised learning is

the key approximation
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mechanism used by GANS //// \\\
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High quality samples from
complicated distributions




Speculative idea: generator nets
for sampling from the posterior

e Practical obstacle:

e Parameters lie in a much higher dimensional space than
observed inputs

e Possible solution:

e Maybe the posterior does not need to be extremely
complicated

e HyperNetworks (Ha et al 2016) seem to be able to model
a distribution on parameters

(Goodfellow 2016)



Theoretical problems

A naive application of GANs to generating
parameters would require samples of the parameters

from the true posterior

e We only have samples of the data that were

generated using the true posterior

(Goodfellow 2016)



HMC approach?

p(X 0) - p(z)|0)
p(X 107 ' p(a ] 67)

e Allows estimation of unnormalized likelihoods via
discriminator
e Drawbacks:
e Discriminator needs to be re-optimized after visiting
each new parameter value

e For the likelihood estimate to be a function of the

parameters, we must include the discriminator

learning process in the graph for the estimate, as in
unrolled GANs (Metz et al 2016)

(Goodfellow 2016)



Variational Bayes

log p(x) >logp(x) — DkL (q(2)[lp(2 | x))
=E.~qlogp(x, z) + H(q)

©

e Same graphical model structure as GANSs
e Often limited by expressivity of ¢



Arbitrary capacity posterior
via backwards GAN

(@

(Generation process Posterior sampling process
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Related variants

e Adversarial autoencoder (Makhzani et al 2015)
e Variational lower bound for training decoder
e Adversarial training of encoder
e Restricted encoder

e Makes aggregate approximate posterior indistinguishable
from prior, rather than approximate posterior
indistinguishable from true posterior

e Uses variational lower bound for training decoder

(Goodfellow 2016)



ALI / BiGAN

o Adversarially Learned Inference (Dumoulin et al
2016)

e (aussian encoder

e BiGAN (Donahue et al 2016)

¢ Deterministic encoder

(Goodfellow 2016)



Adversarial Examples

panda gibbon
58% confidence 99% confidence

(Goodfellow 2016)



Overly linear, increasingly confident
extrapolation
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Designing priors on latent

Both these two class
mixture models
implement roughly the
same marginal over z,
with very different
posteriors over the classes.
The likelihood criterion
cannot strongly prefer one
to the other, and in many
cases will prefer the bad
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RBFs are better than linear

models
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Attacking an RBF model
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Possible Bayesian solutions

e Bayesian neural network
e Better confidence estimates might solve the problem
e So far, has not worked, but may just need more effort
e Variational approach
e MC dropout

 Regularize neural network to emulate Bayesian model with

RBF kernel (amortized inference of Bayesian model)

(Goodfellow 2016)



Universal engineering machine (model-based optimization)

Make new inventions

by tfinding input

that maximizes

Training data Extrapolation
model’s predicted ’

performance

(Goodfellow 2016)



Conclusion

e Generative adversarial nets may be able to
e Sample from the Bayesian posterior over parameters

e Implement an arbitrary capacity ¢ for variational

Bayes

e Bayesian learning may be able to solve the adversarial

example problem and unlock the potential of model-

based optimization

(Goodfellow 2016)



