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Speculation on Three Topics

• Can we build a generative adversarial model of the 
posterior over parameters? 

• Adversarial variants of variational Bayes 

• Can Bayesian modeling solve adversarial examples?
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Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
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Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1
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Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct
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Discriminator Strategy
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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Discriminator

Estimating this ratio 
using supervised learning is 

the key approximation 
mechanism used by GANs



(Goodfellow 2016)

High quality samples from 
complicated distributions
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Speculative idea: generator nets 
for sampling from the posterior

• Practical obstacle: 

• Parameters lie in a much higher dimensional space than 
observed inputs 

• Possible solution: 

• Maybe the posterior does not need to be extremely 
complicated 

• HyperNetworks (Ha et al 2016) seem to be able to model 
a distribution on parameters
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Theoretical problems

• A naive application of GANs to generating 
parameters would require samples of the parameters 
from the true posterior 

• We only have samples of the data that were 
generated using the true posterior
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HMC approach?
p(X | ✓)
p(X | ✓⇤)

= ⇧i
p(x(i) | ✓)
p(x(i) | ✓⇤)

• Allows estimation of unnormalized likelihoods via 
discriminator 

• Drawbacks: 
• Discriminator needs to be re-optimized after visiting 

each new parameter value 
• For the likelihood estimate to be a function of the 

parameters, we must include the discriminator 
learning process in the graph for the estimate, as in 
unrolled GANs (Metz et al 2016)
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Variational Bayes
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• Same graphical model structure as GANs 
• Often limited by expressivity of q
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Arbitrary capacity posterior 
via backwards GAN
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Generation process Posterior sampling process
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Related variants
• Adversarial autoencoder (Makhzani et al 2015) 

• Variational lower bound for training decoder 

• Adversarial training of encoder 

• Restricted encoder 

• Makes aggregate approximate posterior indistinguishable 
from prior, rather than approximate posterior 
indistinguishable from true posterior 

• Uses variational lower bound for training decoder
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ALI / BiGAN

• Adversarially Learned Inference (Dumoulin et al 
2016) 

• Gaussian encoder 

• BiGAN (Donahue et al 2016) 

• Deterministic encoder
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Adversarial Examples

panda 
58% confidence

gibbon 
99% confidence
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Overly linear, increasingly confident 
extrapolation
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Designing priors on latent 
factors

- Both these two class 
mixture models 
implement roughly the 
same marginal over x, 
with very different 
posteriors over the classes. 
The likelihood criterion 
cannot strongly prefer one 
to the other, and in many 
cases will prefer the bad 
one.
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RBFs are better than linear 
models

Attacking a linear model Attacking an RBF model
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Possible Bayesian solutions
• Bayesian neural network 

• Better confidence estimates might solve the problem 

• So far, has not worked, but may just need more effort 

• Variational approach 

• MC dropout 

• Regularize neural network to emulate Bayesian model with 
RBF kernel (amortized inference of Bayesian model)
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Universal engineering machine (model-based optimization)

Training data Extrapolation

Make new inventions 
by finding input 
that maximizes 
model’s predicted 
performance
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Conclusion
• Generative adversarial nets may be able to 

• Sample from the Bayesian posterior over parameters 

• Implement an arbitrary capacity q for variational 
Bayes 

• Bayesian learning may be able to solve the adversarial 
example problem and unlock the potential of model-
based optimization


