Adversarial Examples and Adversarial Training

Ian Goodfellow, OpenAI Research Scientist NIPS 2016 Workshop on Reliable ML in the Wild 2016-12-9

In this presentation

• "Intriguing Properties of Neural Networks" Szegedy et al, 2013

- "Explaining and Harnessing Adversarial Examples"
 Goodfellow et al 2014
- "Adversarial Perturbations of Deep Neural Networks" Warde-Farley and Goodfellow, 2016

In this presentation

- "Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples" Papernot et al 2016
- "Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples" Papernot et al 2016
- "Adversarial Perturbations Against Deep Neural Networks for Malware Classification" Grosse et al 2016 (not my own work)

In this presentation

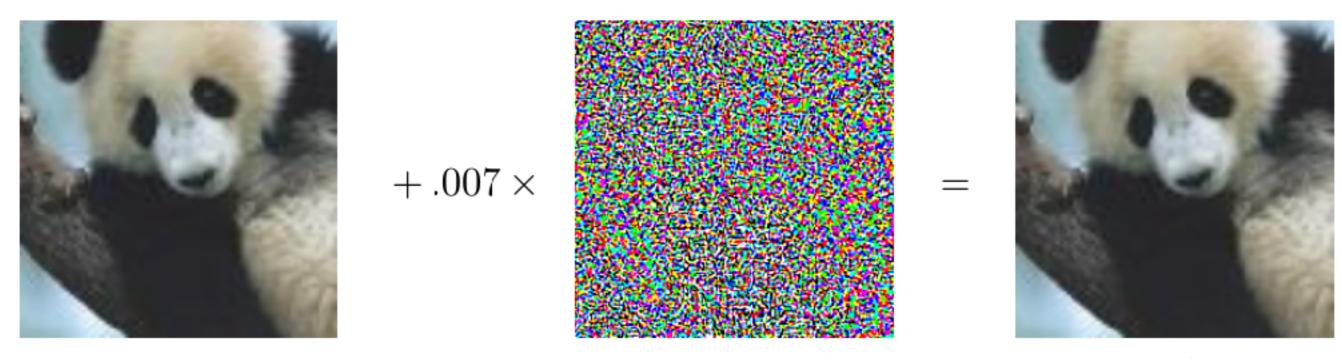
• "Adversarial Examples in the Physical World" Kurakin et al 2016

• Also be sure to check out Takeru Miyato et al's work on *virtual* adversarial training.

Overview

- What are adversarial examples?
- Why do they happen?
- How can they be used to compromise machine learning systems?
- What are the defenses?
- How to use adversarial examples to improve machine learning, even when there is no adversary

Adversarial Examples



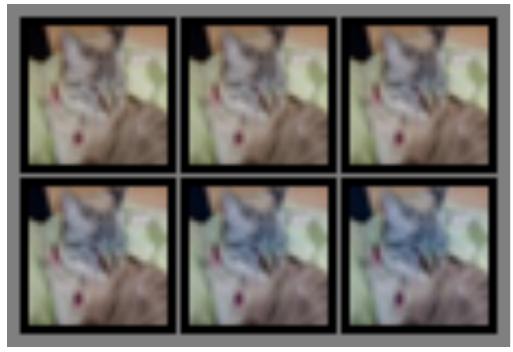
Timeline:

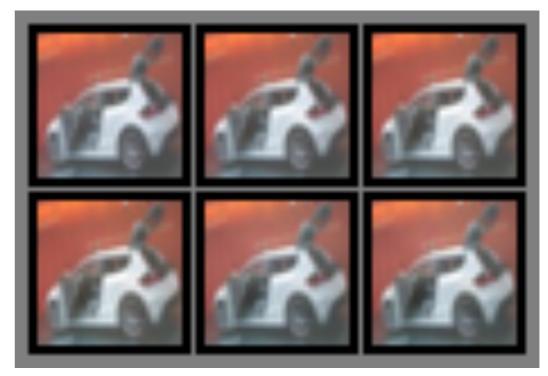
"Adversarial Classification" Dalvi et al 2004: fool spam filter "Evasion Attacks Against Machine Learning at Test Time" Biggio 2013: fool neural nets

Szegedy et al 2013: fool ImageNet classifiers imperceptibly Goodfellow et al 2014: cheap, closed form attack

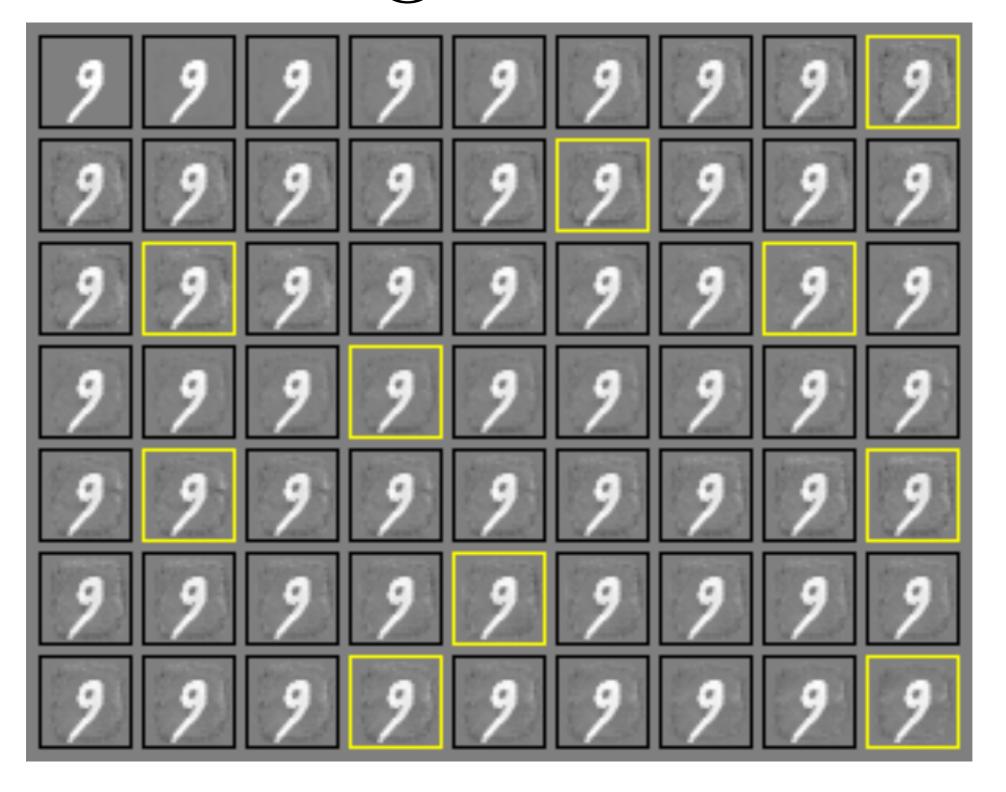
(Goodfellow 2016)

Turning Objects into "Airplanes"





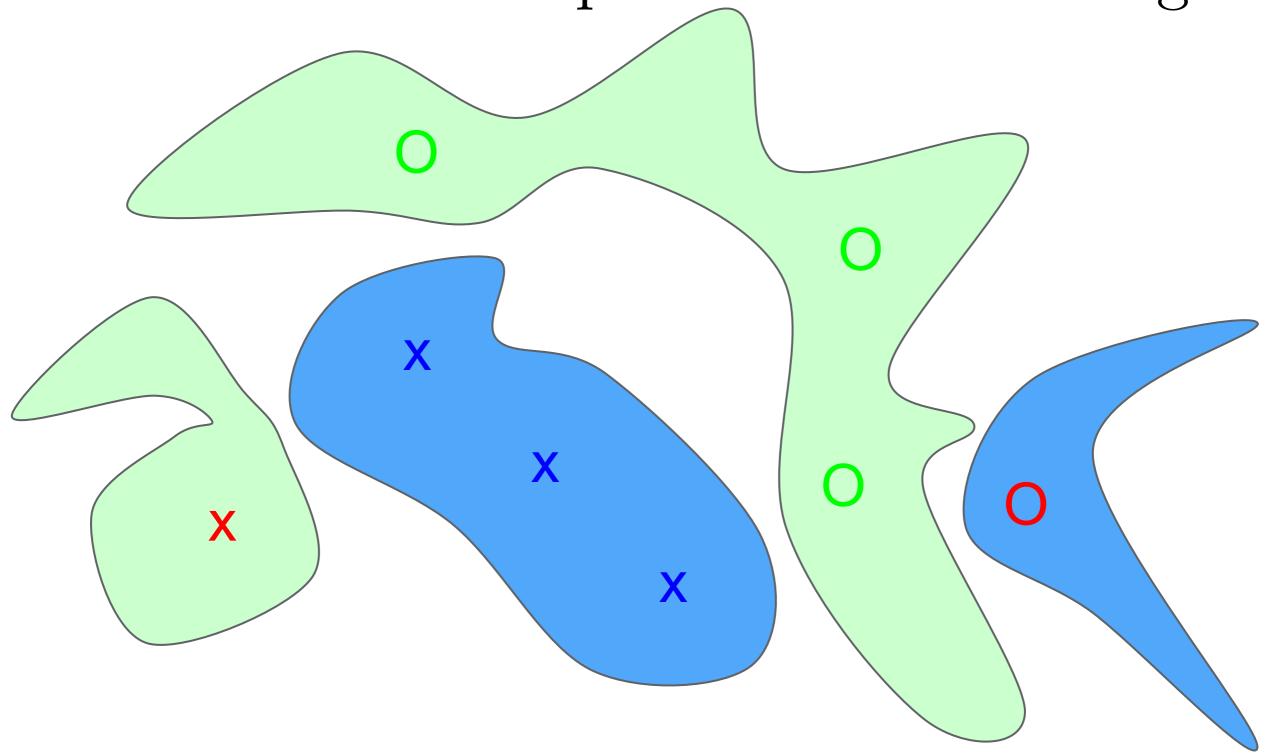
Attacking a Linear Model



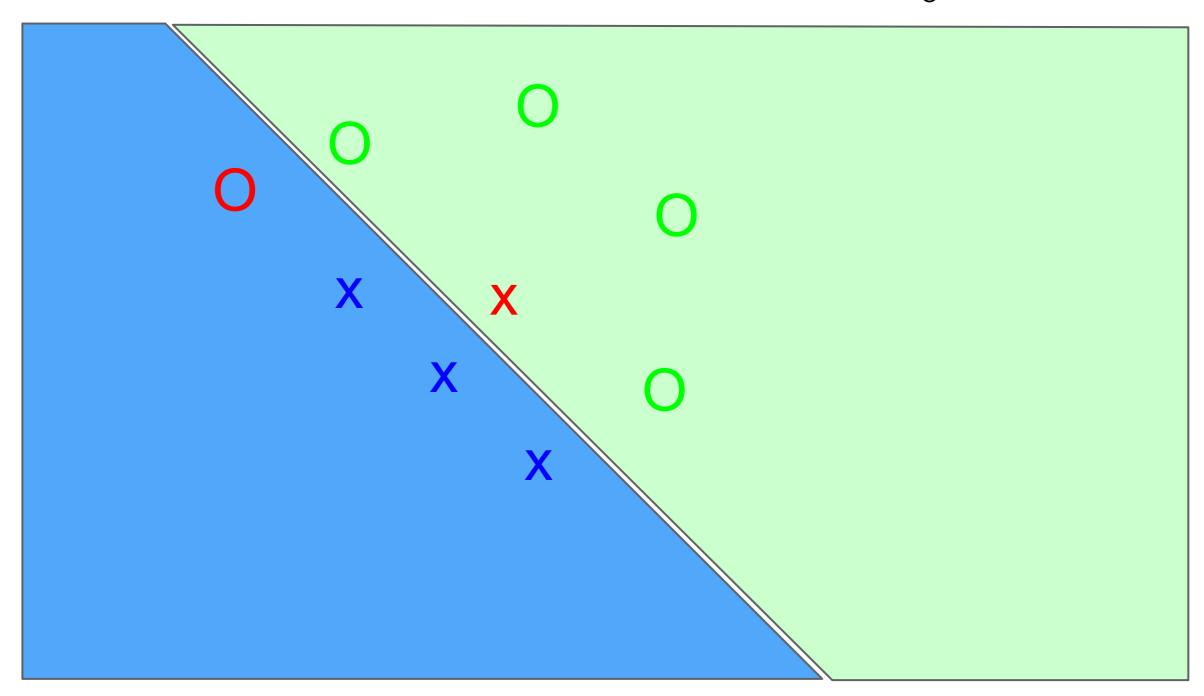
Not just for neural nets

- Linear models
 - Logistic regression
 - Softmax regression
 - SVMs
- Decision trees
- Nearest neighbors

Adversarial Examples from Overfitting

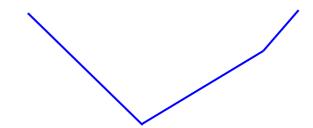


Adversarial Examples from Excessive Linearity



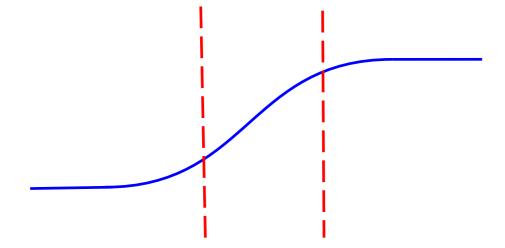
Modern deep nets are very piecewise linear

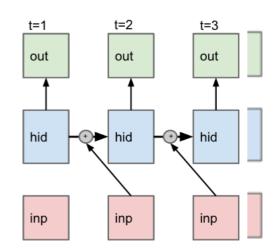
Rectified linear unit



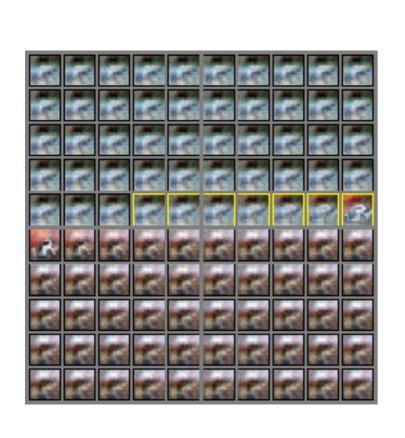
Carefully tuned sigmoid

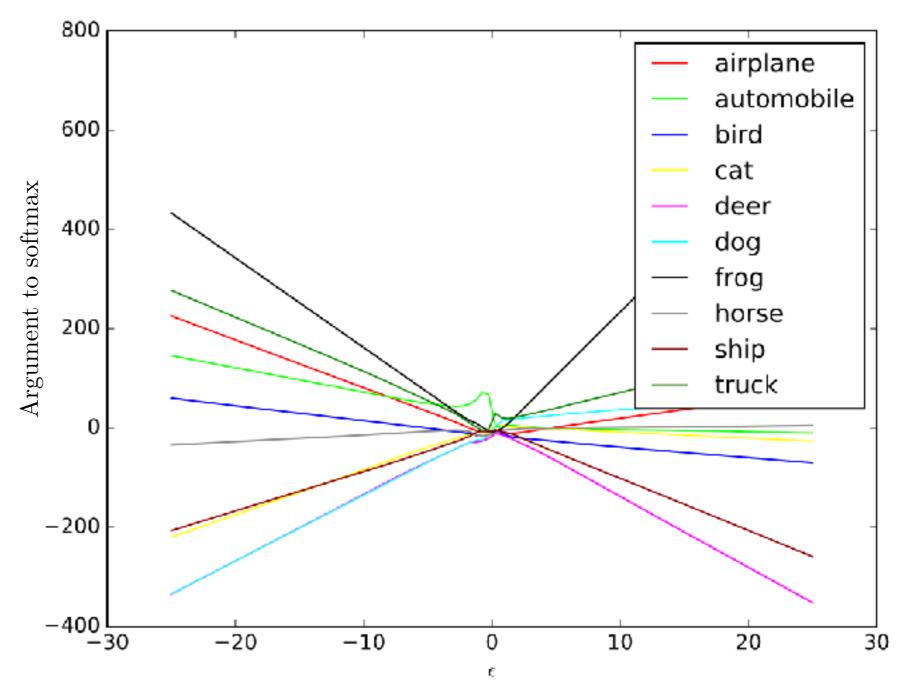
LSTM



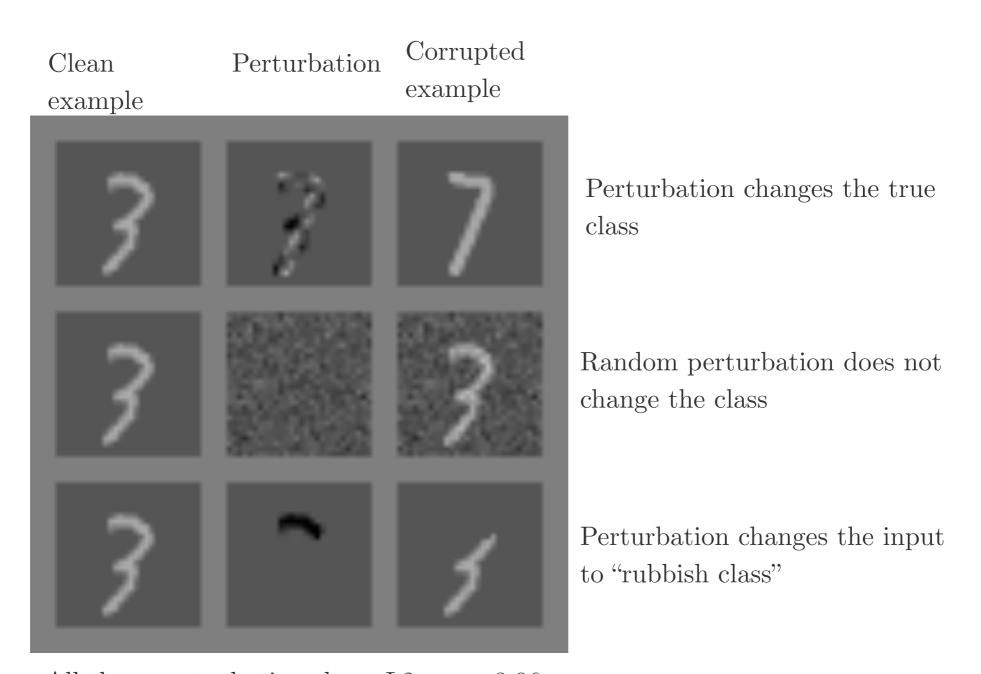


Nearly Linear Responses in Practice





Small inter-class distances



All three perturbations have L2 norm 3.96 This is actually small. We typically use 7!

The Fast Gradient Sign Method

$$J(\tilde{\boldsymbol{x}}, \boldsymbol{\theta}) \approx J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x}).$$

Maximize

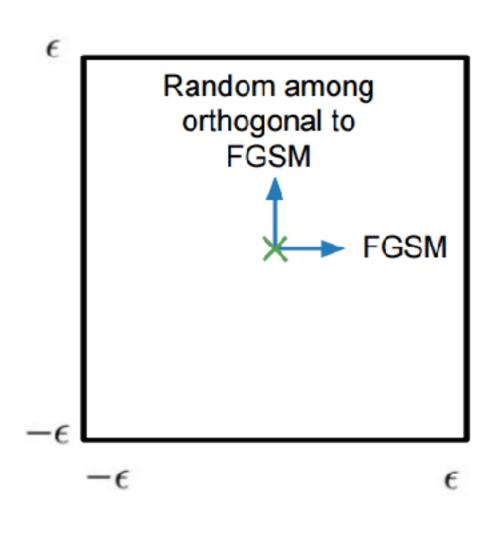
$$J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x})$$

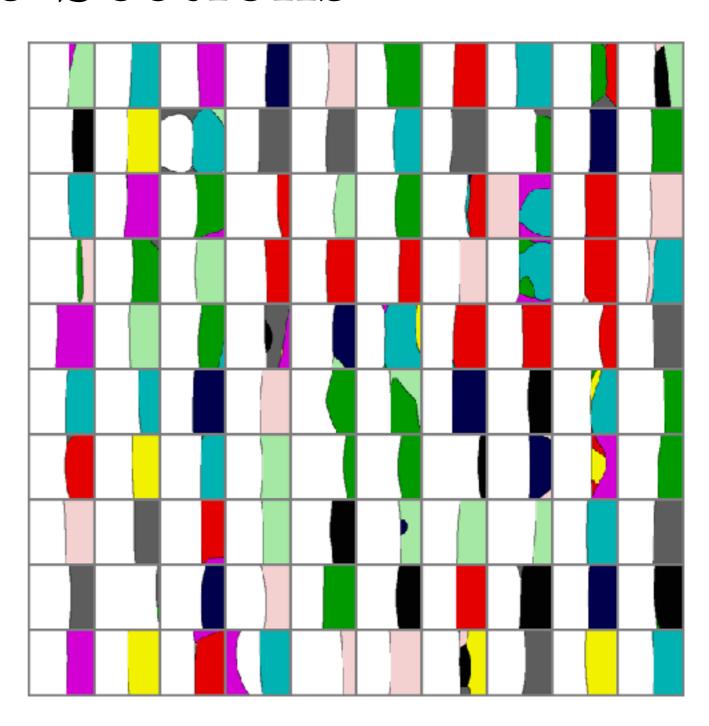
subject to

$$||\tilde{\boldsymbol{x}} - \boldsymbol{x}||_{\infty} \leq \epsilon$$

$$\Rightarrow \tilde{\boldsymbol{x}} = \boldsymbol{x} + \epsilon \operatorname{sign} (\nabla_{\boldsymbol{x}} J(\boldsymbol{x})).$$

Maps of Adversarial and Random Cross-Sections



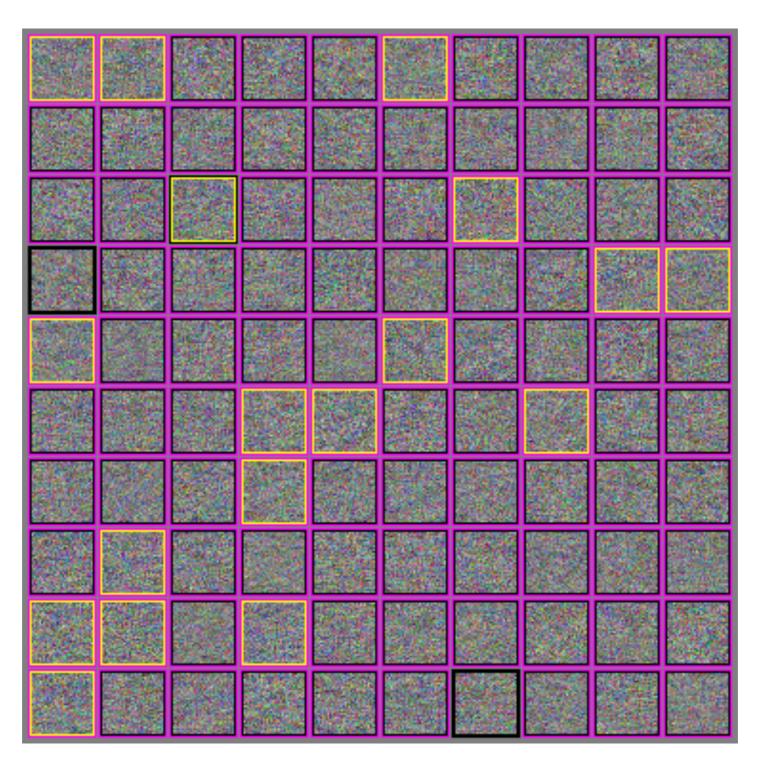


Clever Hans

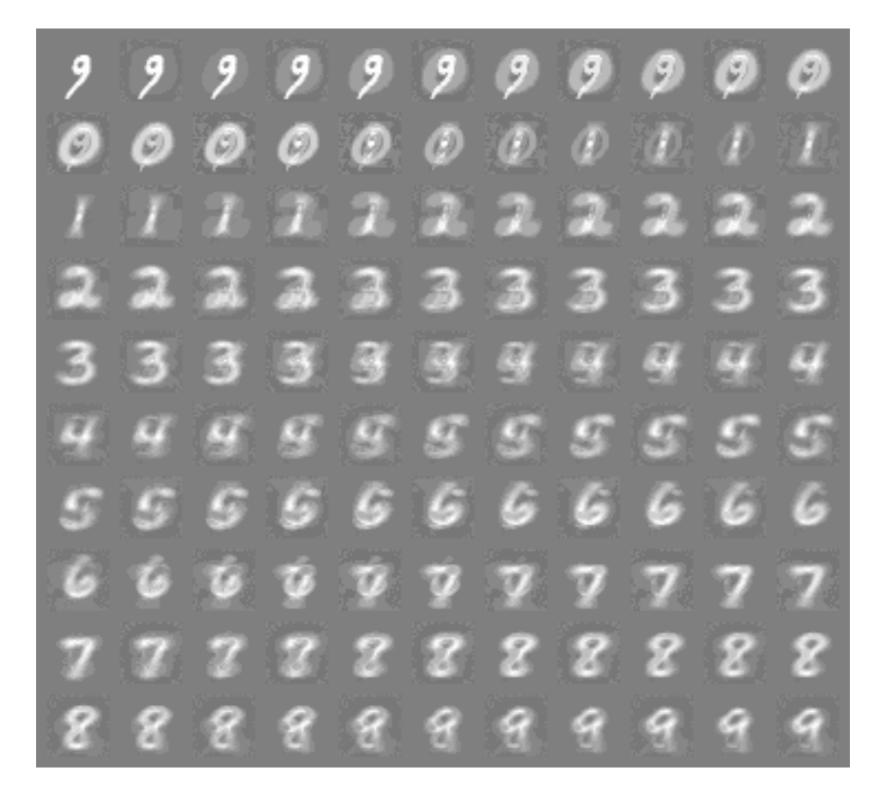


("Clever Hans,
Clever
Algorithms,"
Bob Sturm)

Wrong almost everywhere



RBFs behave more intuitively



Cross-model, cross-dataset, cross-technique generalization

```
333333
             3 3 3 3 3 3 3
3333333
            33333333
333333
             333333
```

Transferability Attack

Target model with unknown weights, machine learning algorithm, training set; maybe non-differentiable

Train your own model

Substitute model

mimicking target

model with known,

differentiable function

Deploy adversarial
examples against the
target; transferability
property results in them
succeeding

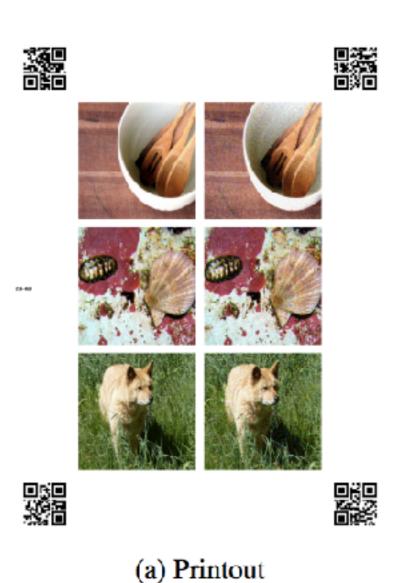
Adversarial examples

Adversarial crafting against substitute

Practical Attacks

- Fool real classifiers trained by remotely hosted API (MetaMind, Amazon, Google)
- Fool malware detector networks
- Display adversarial examples in the physical world and fool machine learning systems that perceive them through a camera

Adversarial Examples in the Physical World



(b) Photo of printout

(c) Cropped image

Failed defenses

Generative

pretraining

Removing perturbation with an autoencoder

Adding noise

at test time

Ensembles

Confidence-reducing perturbation at test time

Error correcting codes

Multiple glimpses

Weight decay

Double backprop

Adding noise

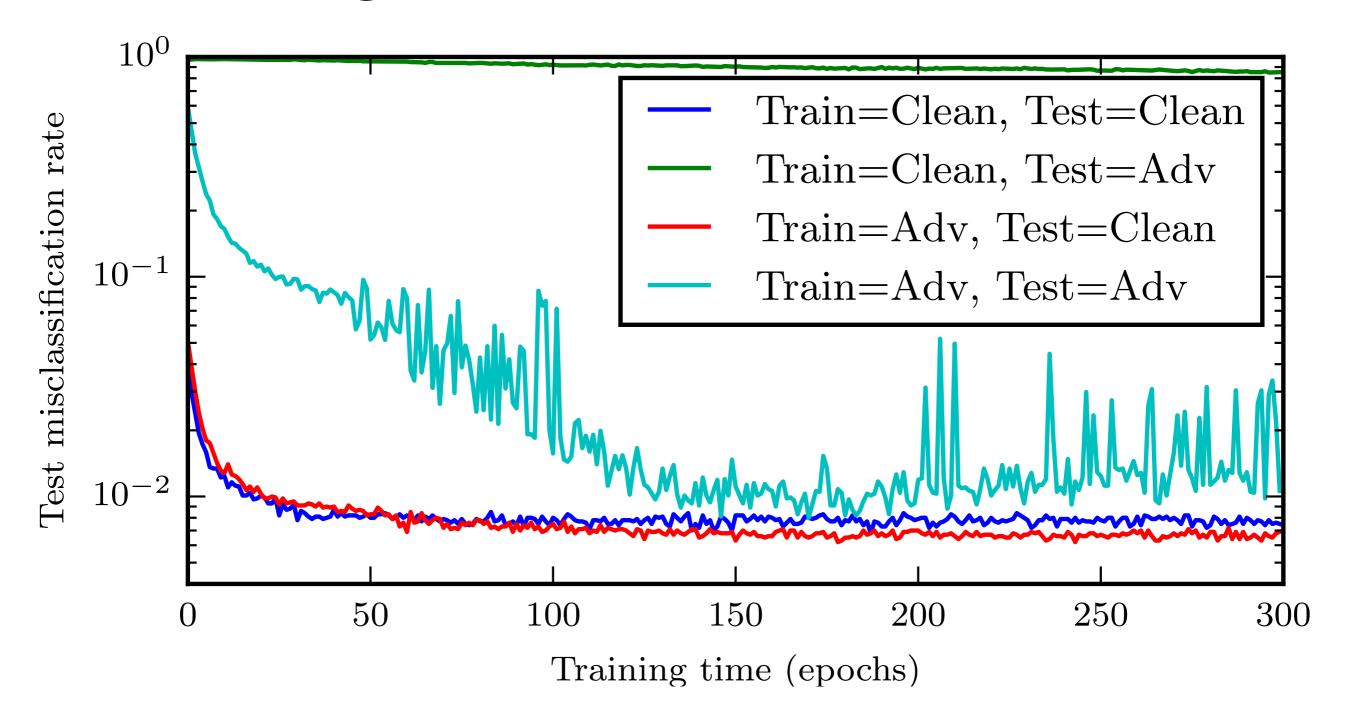
Various

non-linear units

Dropout

at train time

Training on Adversarial Examples



Universal engineering machine (model-based optimization)

Make new inventions
by finding input
that maximizes
model's predicted
performance

Training data

Extrapolation

Conclusion

- Attacking is easy
- Defending is difficult
- Benchmarking vulnerability is training
- Adversarial training provides regularization and semisupervised learning
- The out-of-domain input problem is a bottleneck for model-based optimization generally

cleverhans

Open-source library available at:

https://github.com/openai/cleverhans

Built on top of TensorFlow (Theano support anticipated)

Standard implementation of attacks, for adversarial training

and reproducible benchmarks

