Adversarial Examples and Adversarial Training

Ian Goodfellow, OpenAI Research Scientist Presentation at San Francisco AI Meetup, 2016-08-18

In this presentation

- "Intriguing Properties of Neural Networks" Szegedy et al, 2013
- "Explaining and Harnessing Adversarial Examples" Goodfellow et al 2014
- "Adversarial Perturbations of Deep Neural Networks" Warde-Farley and Goodfellow, 2016

In this presentation

- "Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples"
 Papernot et al 2016
- "Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples" Papernot et al 2016
- "Adversarial Perturbations Against Deep Neural Networks for Malware Classification" Grosse et al 2016 (not my own work)

In this presentation

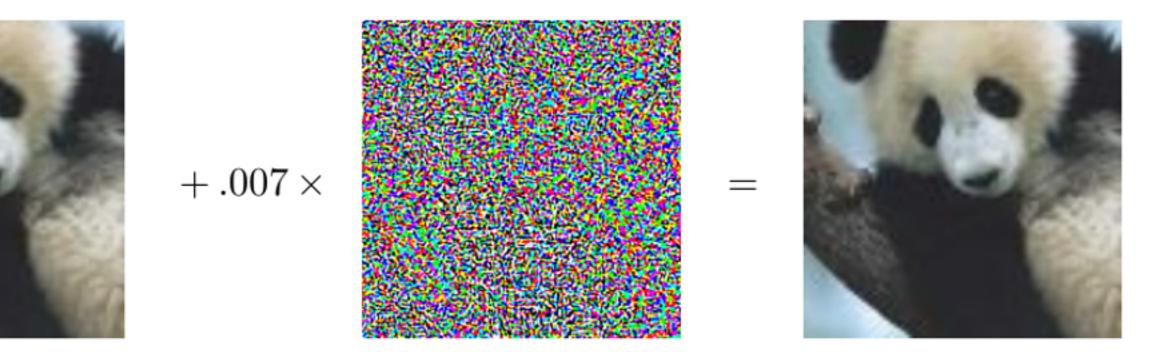
- "Distributional Smoothing with Virtual Adversarial Training" Miyato et al 2015 (not my own work)
- "Virtual Adversarial Training for Semi-Supervised Text Classification" Miyato et al 2016

• "Adversarial Examples in the Physical World" Kurakin et al 2016

Overview

- What are adversarial examples?
- Why do they happen?
- How can they be used to compromise machine learning systems?
- What are the defenses?
- How to use adversarial examples to improve machine learning, even when there is no adversary

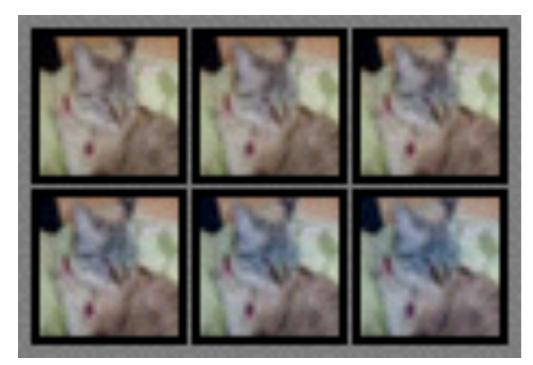
Adversarial Examples



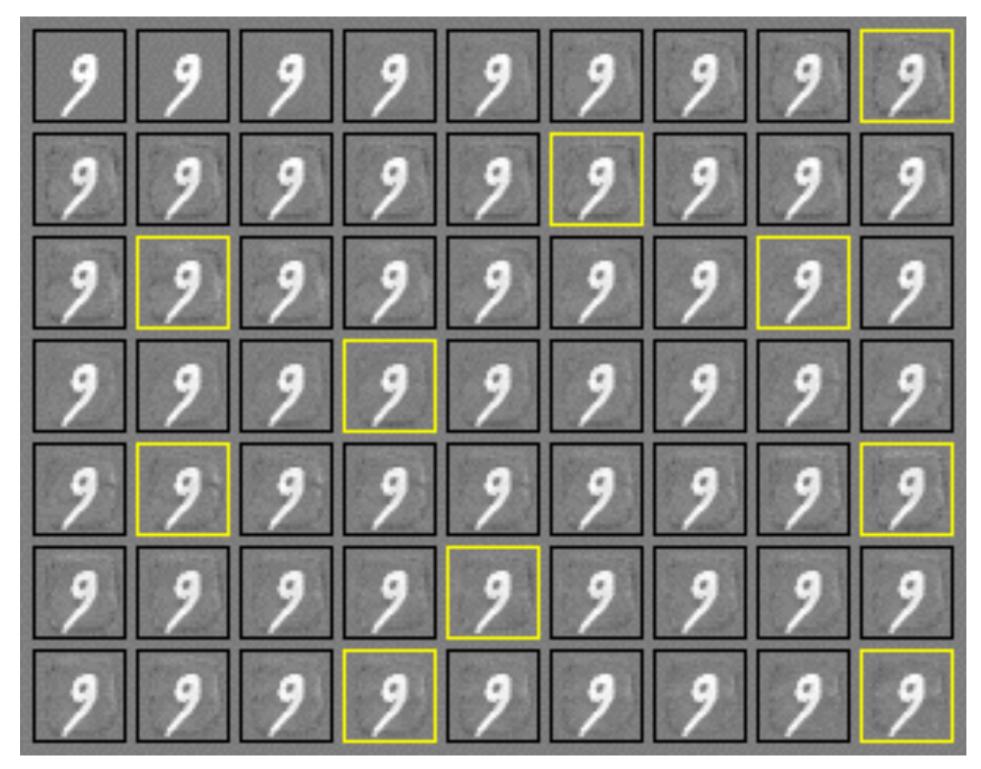
Timeline:

"Adversarial Classification" Dalvi et al 2004: fool spam filter "Evasion Attacks Against Machine Learning at Test Time" Biggio 2013: fool neural nets Szegedy et al 2013: fool ImageNet classifiers imperceptibly Goodfellow et al 2014: cheap, closed form attack

Turning Objects into "Airplanes"

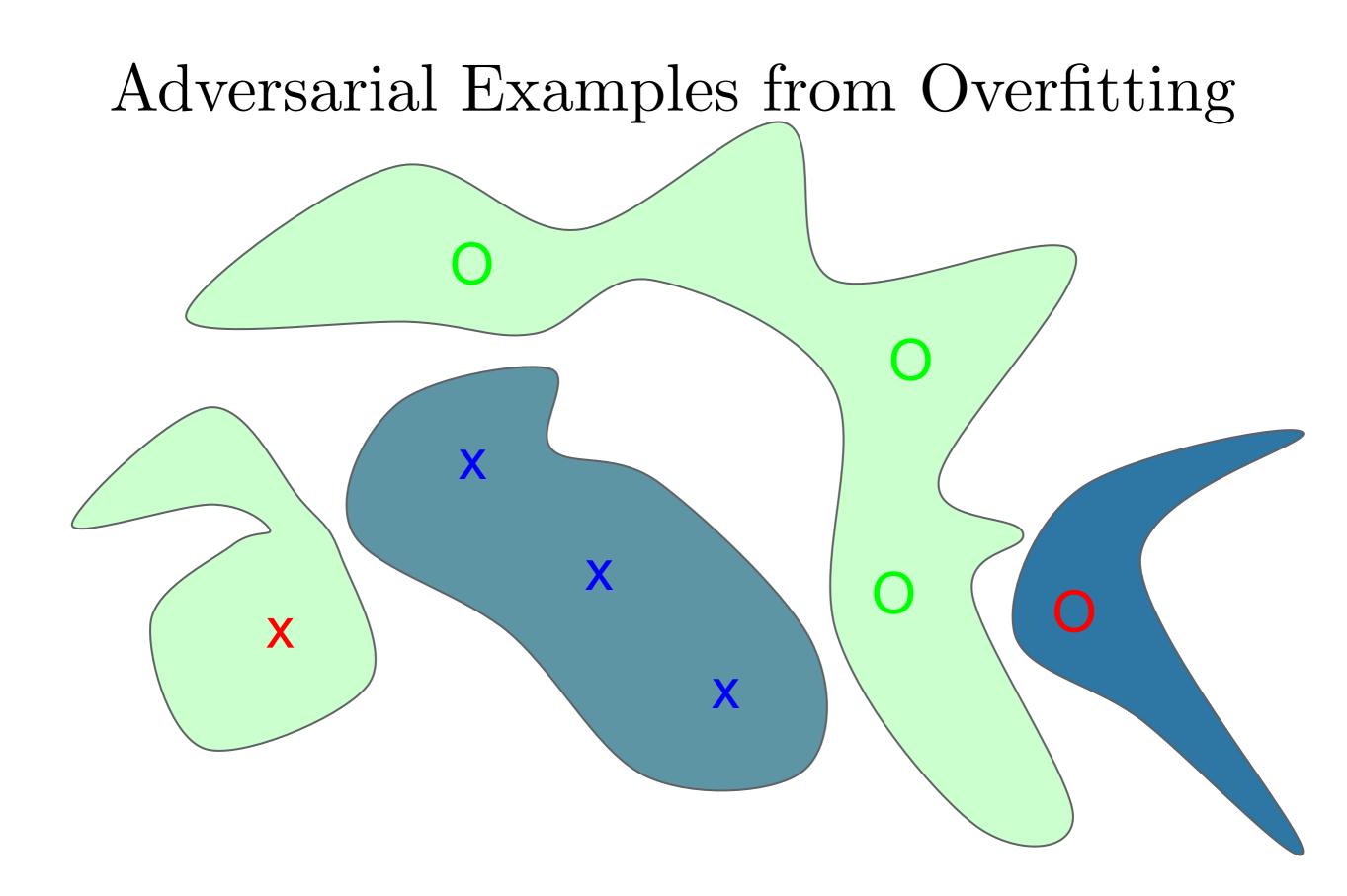


Attacking a Linear Model

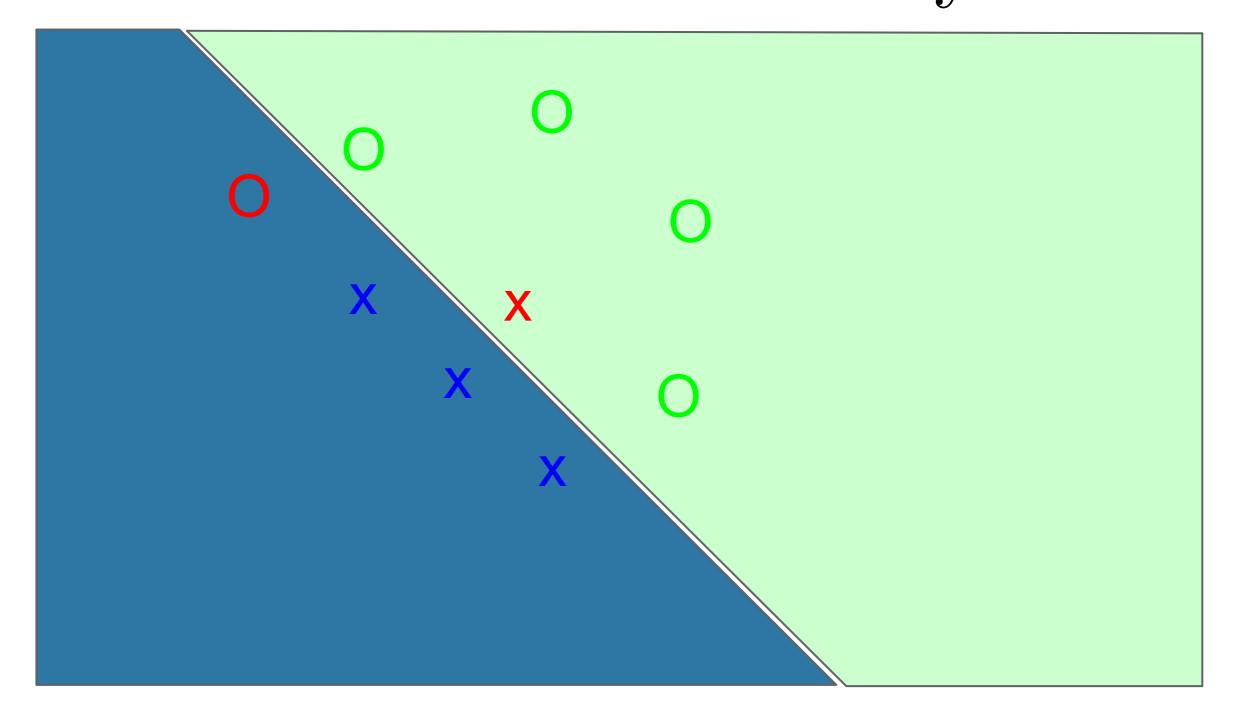


Not just for neural nets

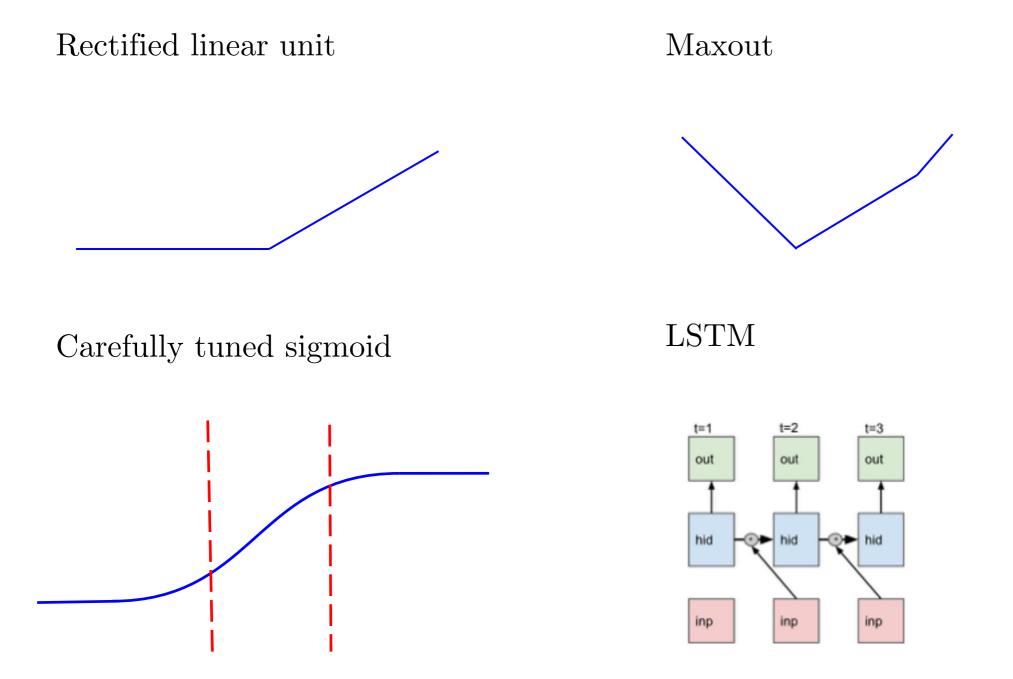
- Linear models
 - Logistic regression
 - Softmax regression
 - SVMs
- Decision trees
- Nearest neighbors



Adversarial Examples from Excessive Linearity

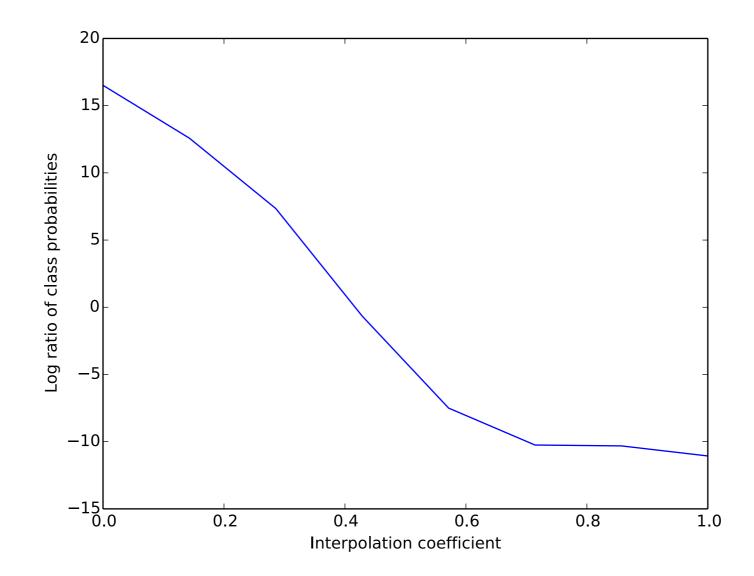


Modern deep nets are very piecewise linear

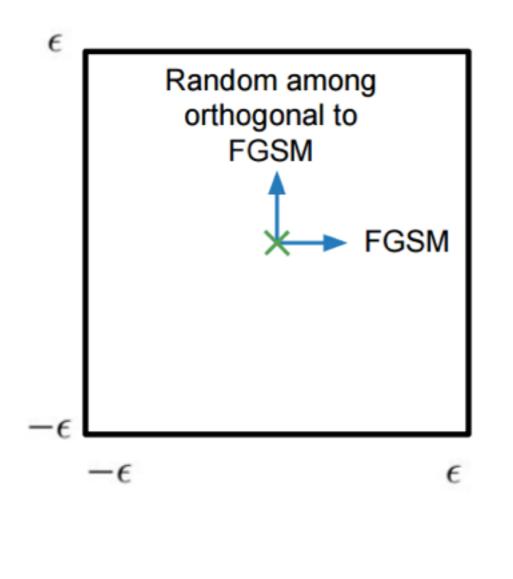


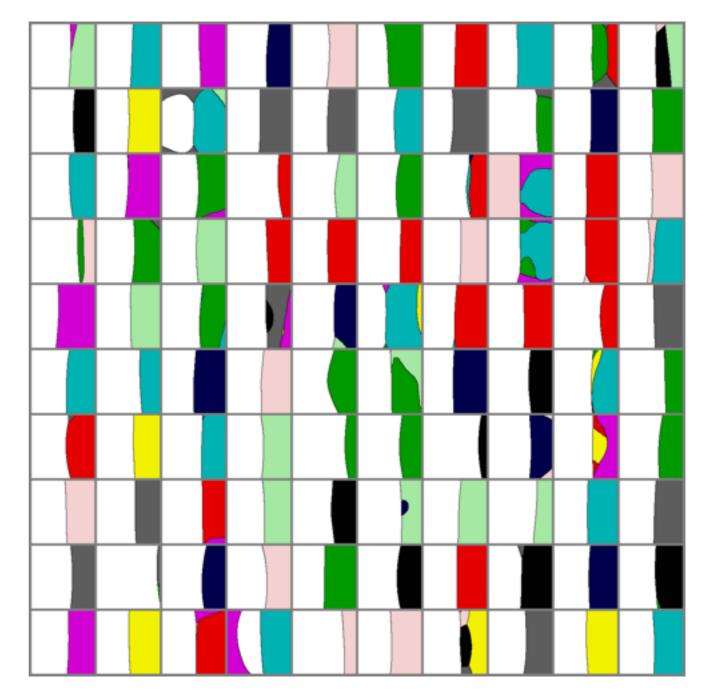
(Goodfellow 2016)

Nearly Linear Responses in Practice

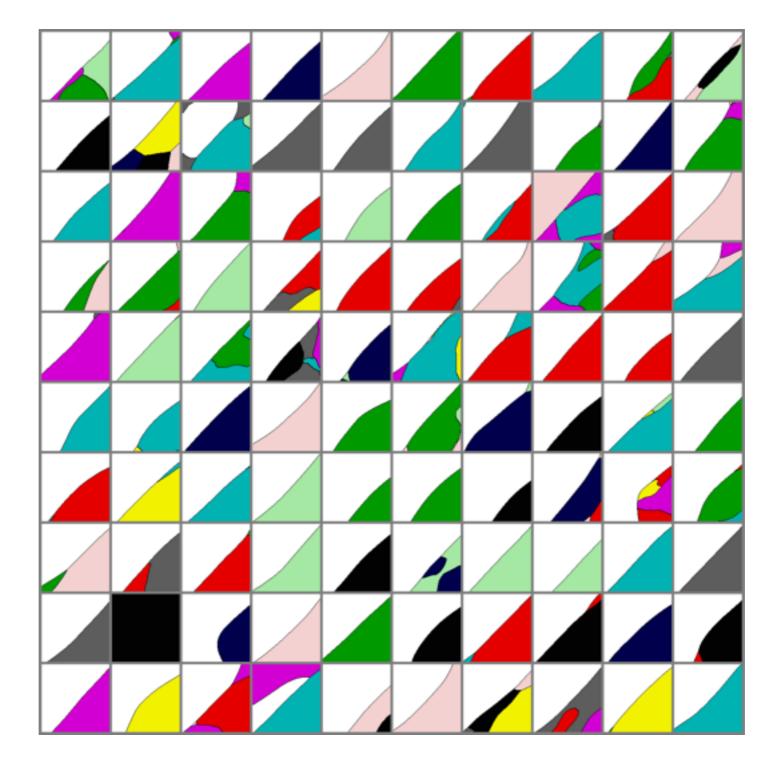


Maps of Adversarial and Random Cross-Sections

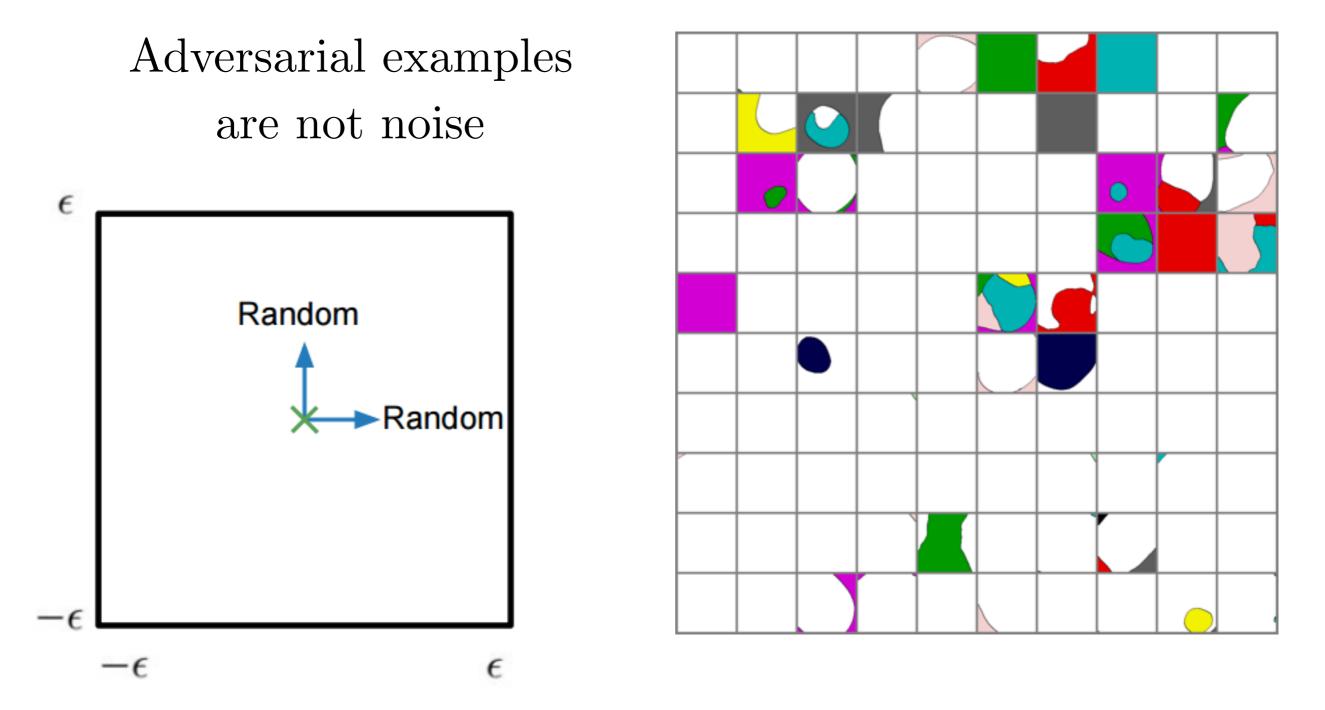




Maps of Adversarial Cross-Sections



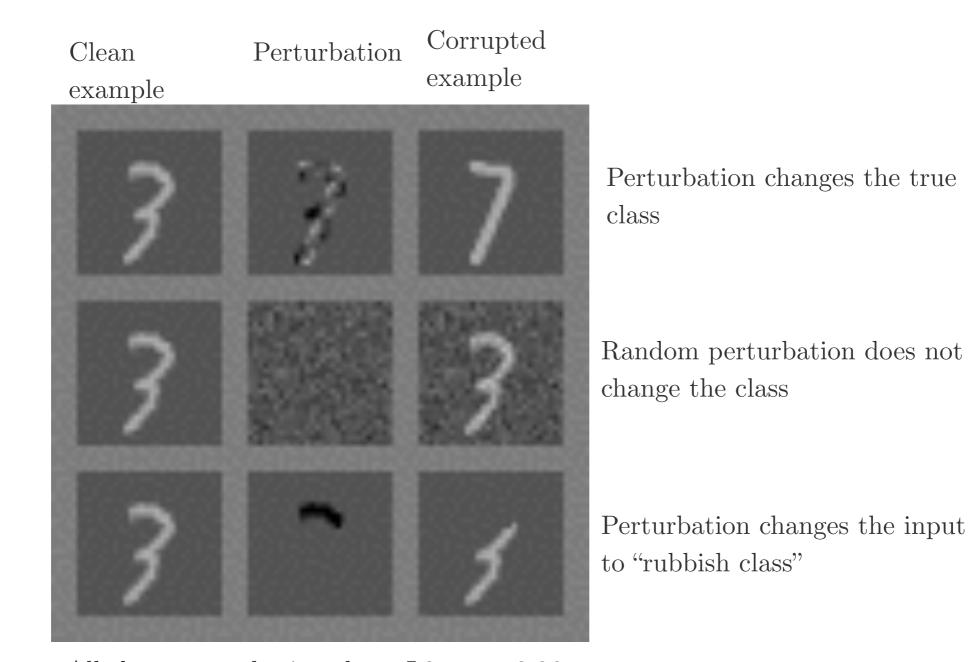
Maps of Random Cross-Sections



Clever Hans

("Clever Hans, Clever Algorithms," Bob Sturm)

Small inter-class distances



All three perturbations have L2 norm 3.96 This is actually small. We typically use 7!

The Fast Gradient Sign Method

$$J(\tilde{\boldsymbol{x}}, \boldsymbol{\theta}) \approx J(\boldsymbol{x}, \boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x}).$$

Maximize

$$J(\boldsymbol{x},\boldsymbol{\theta}) + (\tilde{\boldsymbol{x}} - \boldsymbol{x})^{\top} \nabla_{\boldsymbol{x}} J(\boldsymbol{x})$$

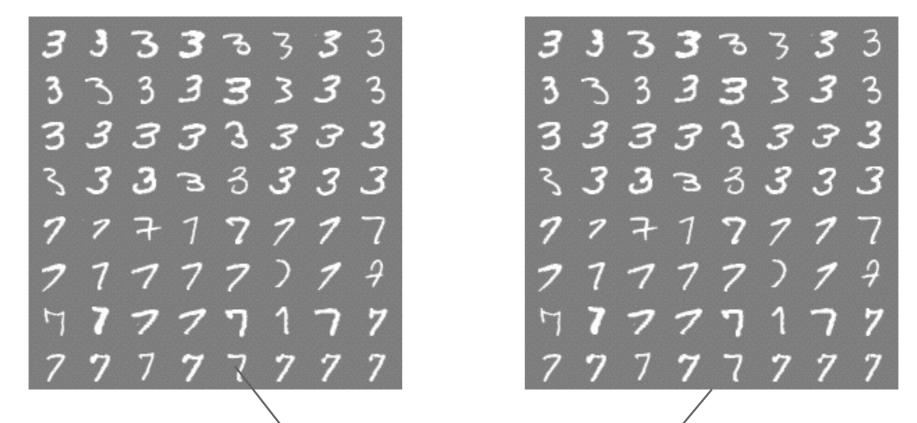
subject to

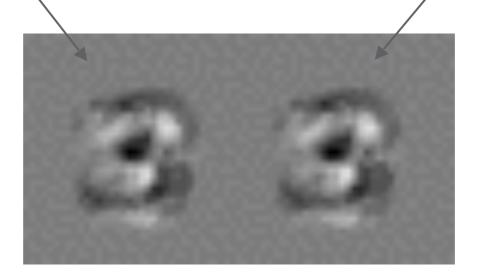
$$\| \tilde{x} - x \|_{\infty} \le \epsilon$$

 $\Rightarrow \tilde{x} = x + \epsilon \operatorname{sign} (\nabla_{x} J(x)).$

Wrong almost everywhere

Cross-model, cross-dataset generalization





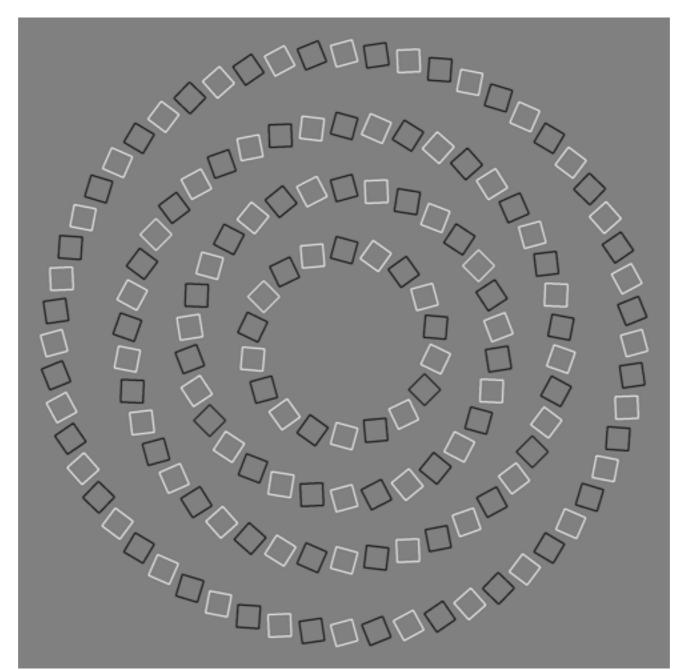
Cross-technique transferability

38.27	23.02	64.32	79.31	8.36	20.72 -	
6.31	91.64	91.43	87.42	11.29	44.14 -	
2.51	36.56	100.0	80.03	5.19	15.67 -	
0.82	12.22	8.85	89.29	3.31	5.11 -	
11.75	42.89	82.16	82.95	41.65	31.92 -	
DNN LR SVM DT kNN Ens. Target Machine Learning Technique						
	6.31 2.51 0.82 11.75	6.31 91.64 2.51 36.56 0.82 12.22 11.75 42.89	6.31 91.64 91.43 2.51 36.56 100.0 0.82 12.22 8.85 11.75 42.89 82.16	6.31 91.64 91.43 87.42 2.51 36.56 100.0 80.03 0.82 12.22 8.855 89.29 11.75 42.89 82.16 82.95 DNN LR SVM DT 36.56 SVM DT	6.31 91.64 91.43 87.42 11.29 2.51 36.56 100.0 80.03 5.19 0.82 12.22 8.85 89.29 3.31 11.75 42.89 82.16 82.95 41.65	

(Papernot 2016)

Transferability Attack Target model with Substitute model unknown weights, Train your mimicking target machine learning own model algorithm, training model with known, differentiable function set; maybe nondifferentiable dversarial crafting Deploy adversarial against substitute Adversarial examples against the target; transferability examples property results in them succeeding

Adversarial Examples in the Human Brain



These are concentric circles, not intertwined spirals.

(Pinna and Gregory, 2002)

Practical Attacks

- Fool real classifiers trained by remotely hosted API (MetaMind, Amazon, Google)
- Fool malware detector networks
- Display adversarial examples in the physical world and fool machine learning systems that perceive them through a camera

Adversarial Examples in the Physical World

(a) Printout

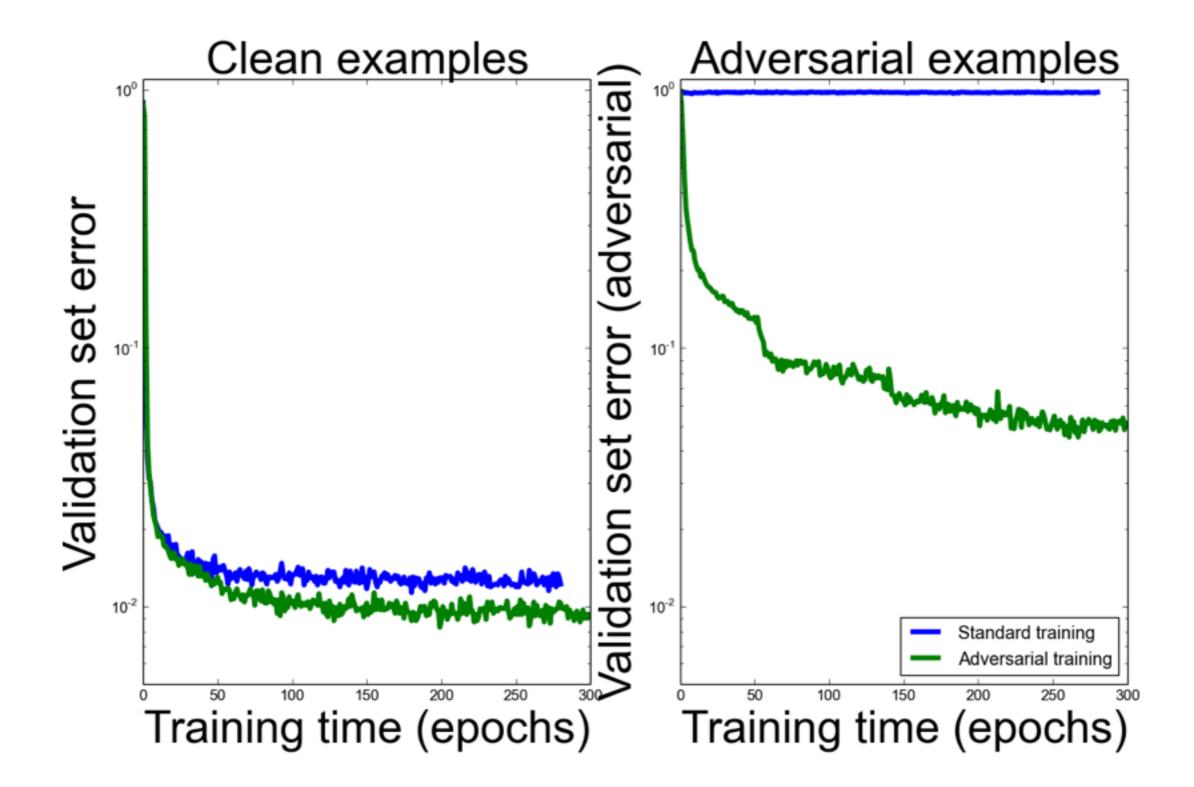
(b) Photo of printout

(c) Cropped image

Failed defenses

Generative Removing perturbation pretraining with an autoencoder Adding noise at test time Ensembles Confidence-reducing Error correcting perturbation at test time codes Multiple glimpses Weight decay Double backprop Adding noise Various at train time non-linear units Dropout

Training on Adversarial Examples



Adversarial Training



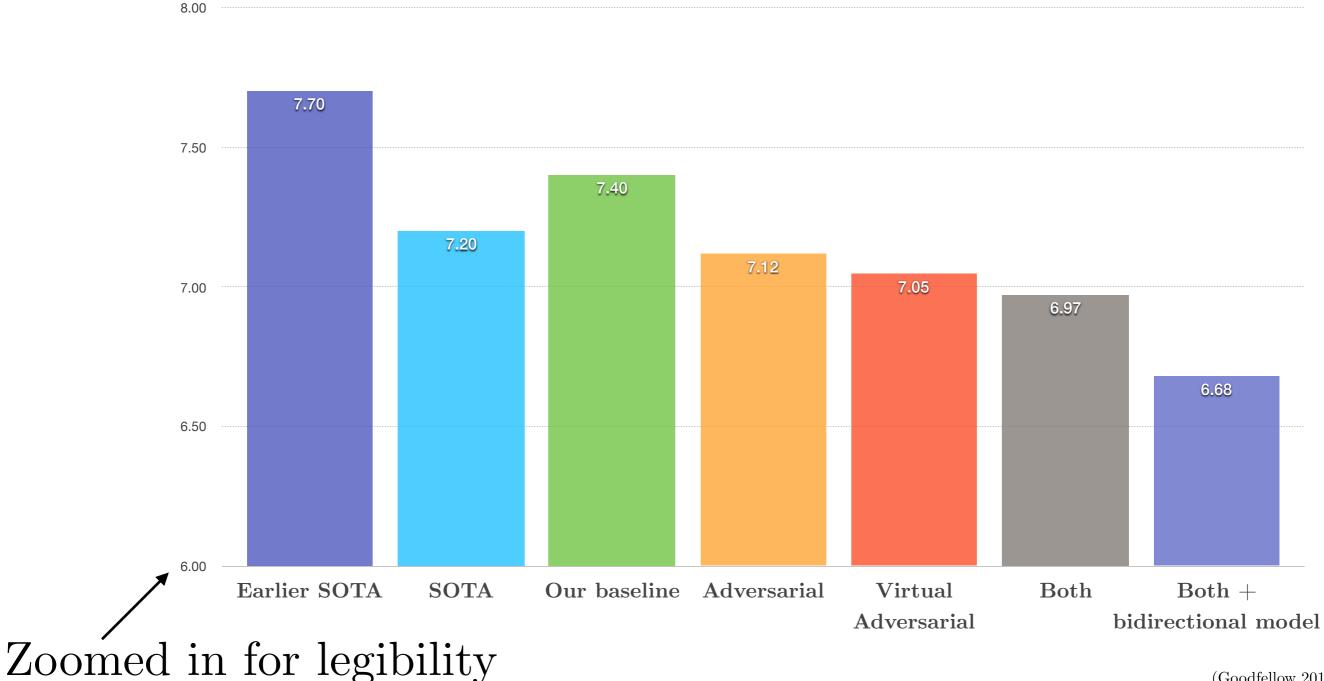
Virtual Adversarial Training

Unlabeled; model guesses it's probably a bird, maybe a plane New guess should match old guess (probably bird, maybe plane)

Adversarial perturbation intended to change the guess

Text Classification with VAT

RCV1 Misclassification Rate



(Goodfellow 2016)

Conclusion

- Attacking is easy
- Defending is difficult
- Benchmarking vulnerability is training
- Adversarial training provides regularization and semi-supervised learning