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(Generative Modeling

e Density estimation

e Sample generation
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Training examples

(Goodfellow 2017)



Maximum Likelihood
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Adversarial Nets Framework
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What can you do with GANSs?

e Missing data

e Semi-supervised learning
e Multiple correct answers
e Realistic generation tasks
e Simulation by prediction
e Solve inference problems

e Learn useful embeddings

(Goodfellow 2017)
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(GANs for simulated training data
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(Shrivastava et al., 2016)
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What is in this image’

(Yeh et al., 2016)



(Generative modeling reveals a face

(Yeh et al., 2016)
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Supervised Discriminator

Hidden

units

(Odena 2016, Salimans et al 2016)

(Goodfellow 2017)



Semi-Supervised Classification

MNIST (Permutation Invariant)

Model Number of incorrectly predicted test examples
for a given number of labeled samples
20 50 100 200
DGN [21] 333 = 14
Virtual Adversarial [22] 212
CatGAN [14] 191 = 10
Skip Deep Generative Model [23] 132 = 7
[Ladder network [24] 1060 = 37
Auxiliary Deep Generative Model [23] 906 = 2
Our model 1677 = 452 221 = 136 93 = 6.5 90 = 4.2
Ensemble of 10 of our models 1134 = 445 142 = 96 306 = 5.6 81 = 4.3

(Salimans et al 2016) S



Semi-Supervised Classification

CIFAR-10

Model Test error rate for
a given number of labeled samples
1000 2000 4000 8000
[Ladder network [24] 20.40x=0.47
CatGAN [14] 19.58=0.46
Our model 21.83x2.01 19.61x=2.09 18.631=2.32 17.7211.82
Ensemble of 10 of our models 19.2210.54 17.25==0.66 15.59=0.47 14.87=0.89

SVHN

Model Percentage of incorrectly predicted test examples
for a given number of labeled samples
500 1000 2000

DGN [21] 36.02==0.10
Virtual Adversarial [22] 24.63
Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.61x0.24

Our model 18.44 == 4.8 3.11 1.3 6.16 = 0.98
Ensemble of 10 of our models 5.88 = 1.0

(Salimans et al 2016)

(Goodfellow 2017)



What can you do with GANSs?

e Simulated environments and training data
e Missing data

e Semi-supervised learning

e Realistic generation tasks
e Simulation by prediction
e Solve inference problems

e Learn useful embeddings

(Goodfellow 2017)



Next Video Frame Prediction

Ground Truth

What happens next?

(Lotter et al 2016)



Next Video Frame Prediction

Ground Truth MSE Adversarial

(Lotter et al 2016)



What can you do with GANSs?

e Simulated environments and training data
e Missing data
e Semi-supervised learning

e Multiple correct answers

e Simulation by prediction
e Solve inference problems

e Learn useful embeddings

(Goodfellow 2017)



x = + Generative Image Manipulation

youtube
(Zhu et al., 2016)

(Goodfellow 2017)


https://www.youtube.com/watch?v=9c4z6YsBGQ0

Introspective Adversarial

Networks
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(Brock et al., 2016)


https://www.youtube.com/watch?v=FDELBFSeqQs
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(Goodfellow 2017)

(Isola et al., 2016)



Unsupervised Image-to-Image ITranslation

Day to night

(Liu et al., 2017)



CycleGAN

(Zhu et al., 2017)

(Goodfellow 2017)



This bird has a
yellow belly and

tarsus, grey back,
wings, and brown

throat, nape with a
black face

(Zhang et al., 2016)

(Goodfellow 2017)



What can you do with GANSs?

e Simulated environments and training data
e Missing data

e Semi-supervised learning
e Multiple correct answers

e Realistic generation tasks

e Solve inference problems

e Learn useful embeddings

(Goodfellow 2017)



Simulating particle physics
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(de Oliveira et al., 2017)

(Goodfellow 2017)
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Adversarial Variational Bayes
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(Mescheder et al, 2017)

(Goodfellow 2017)
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Vector Space Arithmetic
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Woman with Glasses

(Radford et al, 2015)

(Goodfellow 2017)



Learning interpretable latent codes /

controlling the generation process

InfoGAN (Chen et al 2016)



How long until GANs can do this?
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Training examples Model Samples

(Goodfellow 2017)
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monarch butterfly goldfinch

(Odena et al., 2016) S—



Minibatch GAN on ImageNet

(Salimans et al., 2016) (Goottits 217



Cherry-Picked Results
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Problems with Counting
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(Goodfellow 2017)



Problems with Perspective




Problems with Global

Structure




'This one 1s real




Conclusion

e GANs are generative models based on game theory

e GANs open the door to a wide range of engineering
tasks

e There are still important research challenges to solve

before GANSs can generate arbitrary data

(Goodfellow 2017)



