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Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
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Adversarial Nets Framework
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What can you do with GANs?
• Simulated environments and training data 

• Missing data 

• Semi-supervised learning 

• Multiple correct answers 

• Realistic generation tasks 

• Simulation by prediction 

• Solve inference problems 

• Learn useful embeddings
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GANs for simulated training data

(Shrivastava et al., 2016)
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What is in this image?

(Yeh et al., 2016)
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Generative modeling reveals a face

(Yeh et al., 2016)
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Semi-Supervised Classification 
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6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

Figure 3: (Left) samples generated by model dur-
ing semi-supervised training. Samples can be
clearly distinguished from images coming from
MNIST dataset. (Right) Samples generated with
minibatch discrimination. Samples are com-
pletely indistinguishable from dataset images.

The MNIST dataset contains 60, 000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-
tion [20] and add Gaussian noise to the output
of each layer of the discriminator. Table 1 sum-
marizes our results.

Samples generated by the generator during
semi-supervised learning using feature match-
ing (Section 3.1) do not look visually appealing
(left Fig. 3). By using minibatch discrimination
instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing. Similarly, researchers in our institution were not able to find any artifacts that would al-
low them to distinguish samples. However, semi-supervised learning with minibatch discrimination
does not produce as good a classifier as does feature matching.

Model Number of incorrectly predicted test examples
for a given number of labeled samples

20 50 100 200

DGN [21] 333 ± 14

Virtual Adversarial [22] 212
CatGAN [14] 191 ± 10

Skip Deep Generative Model [23] 132 ± 7

Ladder network [24] 106 ± 37

Auxiliary Deep Generative Model [23] 96 ± 2

Our model 1677 ± 452 221 ± 136 93 ± 6.5 90 ± 4.2

Ensemble of 10 of our models 1134 ± 445 142 ± 96 86 ± 5.6 81 ± 4.3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

6.2 CIFAR-10

Model Test error rate for
a given number of labeled samples

1000 2000 4000 8000

Ladder network [24] 20.40±0.47

CatGAN [14] 19.58±0.46

Our model 21.83±2.01 19.61±2.09 18.63±2.32 17.72±1.82

Ensemble of 10 of our models 19.22±0.54 17.25±0.66 15.59±0.47 14.87±0.89

Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

CIFAR-10 is a small, well studied dataset of 32 ⇥ 32 natural images. We use this data set to study
semi-supervised learning, as well as to examine the visual quality of samples that can be achieved.
For the discriminator in our GAN we use a 9 layer deep convolutional network with dropout and
weight normalization. The generator is a 4 layer deep CNN with batch normalization. Table 2
summarizes our results on the semi-supervised learning task.
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(Salimans et al 2016)

MNIST (Permutation Invariant)
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Semi-Supervised Classification 

(Salimans et al 2016)
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Model Percentage of incorrectly predicted test examples
for a given number of labeled samples

500 1000 2000

DGN [21] 36.02±0.10

Virtual Adversarial [22] 24.63

Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.61±0.24

Our model 18.44 ± 4.8 8.11 ± 1.3 6.16 ± 0.58

Ensemble of 10 of our models 5.88 ± 1.0

Figure 5: (Left) Error rate on SVHN. (Right) Samples from the generator for SVHN.

6.4 ImageNet
We tested our techniques on a dataset of unprecedented scale: 128 ⇥ 128 images from the
ILSVRC2012 dataset with 1,000 categories. To our knowledge, no previous publication has ap-
plied a generative model to a dataset with both this large of a resolution and this large a number
of object classes. The large number of object classes is particularly challenging for GANs due to
their tendency to underestimate the entropy in the distribution. We extensively modified a publicly
available implementation of DCGANs2 using TensorFlow [26] to achieve high performance, using
a multi-GPU implementation. DCGANs without modification learn some basic image statistics and
generate contiguous shapes with somewhat natural color and texture but do not learn any objects.
Using the techniques described in this paper, GANs learn to generate objects that resemble animals,
but with incorrect anatomy. Results are shown in Fig. 6.

Figure 6: Samples generated from the ImageNet dataset. (Left) Samples generated by a DCGAN.
(Right) Samples generated using the techniques proposed in this work. The new techniques enable
GANs to learn recognizable features of animals, such as fur, eyes, and noses, but these features are
not correctly combined to form an animal with realistic anatomical structure.

7 Conclusion

Generative adversarial networks are a promising class of generative models that has so far been
held back by unstable training and by the lack of a proper evaluation metric. This work presents
partial solutions to both of these problems. We propose several techniques to stabilize training
that allow us to train models that were previously untrainable. Moreover, our proposed evaluation
metric (the Inception score) gives us a basis for comparing the quality of these models. We apply
our techniques to the problem of semi-supervised learning, achieving state-of-the-art results on a
number of different data sets in computer vision. The contributions made in this work are of a
practical nature; we hope to develop a more rigorous theoretical understanding in future work.

2https://github.com/carpedm20/DCGAN-tensorflow
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Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)

would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can

545

(Lotter et al 2016)

What happens next?
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iGAN

youtube

(Zhu et al., 2016)

https://www.youtube.com/watch?v=9c4z6YsBGQ0
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Introspective Adversarial 
Networks

youtube

(Brock et al., 2016)

https://www.youtube.com/watch?v=FDELBFSeqQs
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Image to Image Translation

Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day!night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges!handbags, compared to ground truth.

(Isola et al., 2016)

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu
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Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.
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Unsupervised Image-to-Image Translation

(Liu et al., 2017)

Day to night



(Goodfellow 2017)

CycleGAN

(Zhu et al., 2017)
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Text-to-Image Synthesis

(Zhang et al., 2016)

This bird has a 
yellow belly and 
tarsus, grey back, 
wings, and brown 
throat, nape with a 
black face 
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Simulating particle physics

(de Oliveira et al., 2017)

Save millions of 
dollars of CPU time 

by predicting 
outcomes of explicit 

simulations
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Adversarial Variational Bayes

(Mescheder et al, 2017)
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Vector Space ArithmeticCHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

common is that one could imagine learning about each of them without having to

see all the configurations of all the others. Radford et al. (2015) demonstrated that
a generative model can learn a representation of images of faces, with separate
directions in representation space capturing different underlying factors of variation.
Figure 15.9 demonstrates that one direction in representation space corresponds
to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
fixed a priori. There is no need to have labels for the hidden unit classifiers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, so long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all of the configurations of the n � 1 other
features by examples covering all of these combinations of values. This form of
statistical separability is what allows one to generalize to new configurations of a
person’s features that have never been seen during training.

552

Man 
with glasses

Man Woman

Woman with Glasses

(Radford et al, 2015)
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Learning interpretable latent codes / 
controlling the generation process

InfoGAN (Chen et al 2016)
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How long until GANs can do this?

Training examples Model samples
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AC-GANs

(Odena et al., 2016)
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Minibatch GAN on ImageNet

(Salimans et al., 2016)
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Cherry-Picked Results
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Problems with Counting
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Problems with Perspective
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Problems with Global 
Structure
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This one is real
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Conclusion

• GANs are generative models based on game theory 

• GANs open the door to a wide range of engineering 
tasks 

• There are still important research challenges to solve 
before GANs can generate arbitrary data


