MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-GAN LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN AMGAN iGAN LSGAN InfoGAN CatGAN Generative Adversarial Networks Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN McGAN DR-GAN Adobe Research Seminar C-RNN-GAN MGAN San Jose, California 2017-05-09 GoGAN C-VAE-GAN FF-GAN DCGAN AC-GAN CCGAN MAGAN 3D-GAN BiGAN DualGAN GAWWN CycleGAN GP-GAN **Bayesian GAN** AnoGAN EBGAN DTN ALI MARTA-GAN f-GAN A++ MAD-GAN AL-CGAN MalGAN BEGAN ArtGAN

Generative Modeling

• Density estimation

• Sample generation

Training examples

Model samples

Maximum Likelihood

θ

 $\boldsymbol{\theta}^* = rg \max \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$

(Goodfellow et al., 2014)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

ΑΙ

OBSESSIONS

Q

GANs for simulated training data Unlabeled Real Images

Synthetic

Refined

(Shrivastava et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

What is in this image?

(Yeh et al., 2016)

Generative modeling reveals a face

(Yeh et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

(Odena 2016, Salimans et al 2016)

Supervised Discriminator

Semi-Supervised Classification

20

Model

DGN [21] Virtual Adversarial [22] CatGAN [14] Skip Deep Generative Model [23] Ladder network [24] Auxiliary Deep Generative Model [23] 1677 ± 4 Our model 1134 ± 4 Ensemble of 10 of our models

MNIST (Permutation Invariant)

Number of incorrectly predicted test examples

for a given number of labeled samples

	50	100	200
		333 ± 14	
		212	
		191 ± 10	
		132 ± 7	
		106 ± 37	
		96 ± 2	
52	221 ± 136	93 ± 6.5	90 ± 4.2
45	142 ± 96	86 ± 5.6	81 ± 4.3

(Salimans et al 2016)

Semi-Supervised Classification

CIFAR-10

Model	Test error rate for a given number of labeled samples			
	1000	2000	4000	8000
Ladder network [24]			$20.40 {\pm} 0.47$	
CatGAN [14]			$19.58 {\pm} 0.46$	
Our model	$21.83 {\pm} 2.01$	$19.61 {\pm} 2.09$	$18.63 {\pm} 2.32$	$17.72 {\pm} 1.82$
Ensemble of 10 of our models	$19.22 {\pm} 0.54$	$17.25 {\pm} 0.66$	$15.59 {\pm} 0.47$	$14.87 {\pm} 0.89$

Au

SVHN

Model	Percentage of incorrectly predicted test examples			
	for a given number of labeled samples			
	500	1000	2000	
DGN [21]		$36.02 {\pm} 0.10$		
Virtual Adversarial [22]		24.63		
xiliary Deep Generative Model [23]	22.86			
Skip Deep Generative Model [23]		$16.61 {\pm} 0.24$		
Our model	18.44 ± 4.8	8.11 ± 1.3	6.16 ± 0.5	
Ensemble of 10 of our models		5.88 ± 1.0		

(Salimans et al 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Next Video Frame Prediction

What happens next?

(Lotter et al 2016)

Ground Truth

Next Video Frame Prediction

(Lotter et al 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

iGAN

youtube

(Zhu et al., 2016)

Introspective Adversarial Networks

youtube

(Brock et al., 2016)

Image to Image Translation

(Isola et al., 2016)

Unsupervised Image-to-Image Translation

Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)

Text-to-Image Synthesis

This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face

(Zhang et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Simulating particle physics

Save millions of dollars of CPU time by predicting outcomes of explicit simulations

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Adversarial Variational Bayes

(Mescheder et al, 2017)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Vector Space Arithmetic

Man Man with glasses

(Radford et al, 2015)

Woman

Woman with Glasses

Learning interpretable latent codes controlling the generation process

(a) Azimuth (pose)

(c) Lighting

(b) Elevation

(d) Wide or Narrow

InfoGAN (Chen et al 2016)

Training examples

How long until GANs can do this?

Model samples

monarch butterfly

(Odena et al., 2016)

AC-GANs

daisy

Minibatch GAN on ImageNet

(Salimans et al., 2016)

Cherry-Picked Results

Problems with Counting

Problems with Perspective

Problems with Global

Structure

This one is real

Conclusion

- tasks
- before GANs can generate arbitrary data

• GANs are generative models based on game theory

• GANs open the door to a wide range of engineering

• There are still important research challenges to solve

