Generative Models I Ian Goodfellow, Staff Research Scientist, Google Brain MILA Deep Learning Summer School Montréal, Québec 2017-06-27

Density Estimation

Training examples

Sample Generation

Model samples

Maximum Likelihood

θ

 $\boldsymbol{\theta}^* = rg \max \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$

Fully Visible Belief Nets

- Explicit formula based on chain (Frey et al, 1996) rule:

 $p_{\text{model}}(\boldsymbol{x}) = p_{\text{model}}(x_1) \prod p_{\text{model}}(x_i \mid x_1, \dots, x_{i-1})$ i=2

Fully Visible Belief Nets

- Disadvantages:
 - O(n) non-parallelizable sample generation runtime
 - Generation not controlled by a latent code

Notable FVBNs

NADE MADE (Larochelle et al 2011) (Germain et al 2016)

"Autoregressive models"

PixelCNN (van den Ord et al 2016)

Change of Variables

64x64 ImageNet Samples Real NVP (Dinh et al 2016)

 $y = g(x) \Rightarrow p_x(x) = p_y(g(x)) \left| \det \left(\frac{\partial g(x)}{\partial x} \right) \right|$

e.g. Nonlinear ICA (Hyvärinen 1999) Disadvantages:

- Transformation must be invertible
- Latent dimension must match visible dimension

Variational Learning

$\begin{pmatrix} \boldsymbol{z} \end{pmatrix} p_{\text{model}}(\boldsymbol{x}) = \int p_{\text{model}}(\boldsymbol{x}, \boldsymbol{z}) d\boldsymbol{z}$

Latent variable models often have intractable density

$=\mathbb{E}_{\boldsymbol{z}\sim q}\log p(\boldsymbol{x},\boldsymbol{z})+H(q)$

Variational Bound $\log p(\boldsymbol{x}) \geq \log p(\boldsymbol{x}) - D_{\mathrm{KL}} \left(q(\boldsymbol{z}) \| p(\boldsymbol{z} \mid \boldsymbol{x}) \right)$

Variational inference: maximize with respect to qVariational learning: maximize with respect to parameters of p

Variational Autoencoder (Kingma and Welling 2013, Rezende et al 2014)

Define a neural network that predicts optimal qDefine $p(z \mid x)$ via another neural network

> Whole model can be fit via maximization of a single objective function with gradient- based optimization

CIFAR-10 samples (Kingma et al 2016)

For more information.

• Max Welling will teach a lesson on variational inference

Deep Boltzmann Machines

(Salakhutdinov and Hinton, 2009)

Generative Stochastic Networks

(Bengio et. al, 2013)

Generative Adversarial Networks

(Goodfellow et al., 2014)

Combining VAEs and GANs: Adversarial Variational Bayes

(Mescheder et al, 2017)

Related:

-Adversarial autoencoders

-Adversarially learned inference -BiGANs

What can you do with

generative models?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Learn useful embeddings

ΑΙ

OBSESSIONS

Q

Generative models for simulated

- training data
 - Unlabeled Real Images

(Shrivastava et al., 2016)

generative models?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Learn useful embeddings

What can you do with

What is in this image?

(Yeh et al., 2016)

Generative modeling reveals a face

(Yeh et al., 2016)

generative models?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Learn useful embeddings

What can you do with

(Odena 2016, Salimans et al 2016)

Supervised Discriminator

Semi-Supervised Classification

20

Model

DGN [21] Virtual Adversarial [22] CatGAN [14] Skip Deep Generative Model [23] Ladder network [24] Auxiliary Deep Generative Model [23] 1677 ± 4 Our model 1134 ± 4 Ensemble of 10 of our models

MNIST (Permutation Invariant)

Number of incorrectly predicted test examples

for a given number of labeled samples

	50	100	200
		333 ± 14	
		212	
		191 ± 10	
		132 ± 7	
		106 ± 37	
		96 ± 2	
52	221 ± 136	93 ± 6.5	90 ± 4.2
45	142 ± 96	86 ± 5.6	81 ± 4.3

(Salimans et al 2016)

Semi-Supervised Classification

CIFAR-10

Model	Test error rate for a given number of labeled samples			
	1000	2000	4000	8000
Ladder network [24]			$20.40 {\pm} 0.47$	
CatGAN [14]			$19.58 {\pm} 0.46$	
Our model	$21.83 {\pm} 2.01$	$19.61 {\pm} 2.09$	$18.63 {\pm} 2.32$	$17.72 {\pm} 1.82$
Ensemble of 10 of our models	$19.22 {\pm} 0.54$	$17.25 {\pm} 0.66$	$15.59 {\pm} 0.47$	$14.87 {\pm} 0.89$

Au

SVHN

Model	Percentage of incorrectly predicted test examples			
	for a given number of labeled samples			
	500	1000	2000	
DGN [21]		$36.02 {\pm} 0.10$		
Virtual Adversarial [22]		24.63		
xiliary Deep Generative Model [23]	22.86			
Skip Deep Generative Model [23]		$16.61 {\pm} 0.24$		
Our model	18.44 ± 4.8	8.11 ± 1.3	6.16 ± 0.5	
Ensemble of 10 of our models		5.88 ± 1.0		

(Salimans et al 2016)

generative models?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Learn useful embeddings

What can you do with

Next Video Frame Prediction

What happens next?

(Lotter et al 2016)

Ground Truth

Next Video Frame Prediction

(Lotter et al 2016)

generative models?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Learn useful embeddings

What can you do with

iGAN

youtube

(Zhu et al., 2016)

Introspective Adversarial Networks

youtube

(Brock et al., 2016)

Image to Image Translation

(Isola et al., 2016)

Unsupervised Image-to-Image Translation

Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)

Text-to-Image Synthesis

This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face

(Zhang et al., 2016)

generative models?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Learn useful embeddings

What can you do with

Simulating particle physics

Save millions of dollars of CPU time by predicting outcomes of explicit simulations

What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Learn useful embeddings

Vector Space Arithmetic

Man Man with glasses

(Radford et al, 2015)

Woman

Woman with Glasses

Learning interpretable latent codes controlling the generation process

(a) Azimuth (pose)

(c) Lighting

(b) Elevation

(d) Wide or Narrow

InfoGAN (Chen et al 2016)

Plug and Play Generative Networks

- 2016)
- Generates 227x227 realistic images from all ImageNet classes

• New state of the art generative model (Nguyen et al

• Combines adversarial training, moment matching, denoising autoencoders, and Langevin sampling

redshank

PPGN Samples

ant

monastery

volcano

(Nguyen et al 2016)

PPGN for caption to image

oranges on a table next to a liquor bottle

(Nguyen et al 2016)

Basic idea

- Langevin sampling repeatedly adds noise and gradient of log p(x,y) to generate samples (Markov chain)
- Denoising autoencoders estimate the required gradient
- Use a special denoising autoencoder that has been trained with multiple losses, including a GAN loss, to obtain best results

gradient

Sampling without class

epsilon1 = 0, epsilon2 = 1e-5(Nguyen et al 2016)

GAN loss is a key ingredient

Raw data

Images from Nguyen et al 2016 First observed by Dosovitskiy et al 2016

Reconstruction by PPGN

on Reconstruction by PPGN without GAN et al 2016 skiy et al 2016

To be continued...

• Generative Models II will be taught by Aaron Courville

For more information...

DEEP LEARNING Ian Goodfellow, Yoshua Bengio,

and Aaron Courville

www.deeplearningbook.org