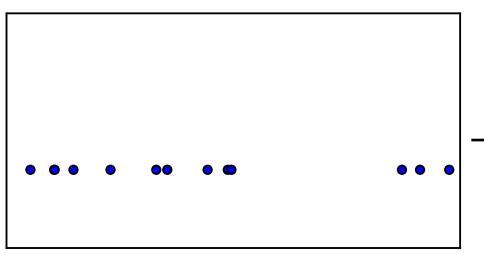
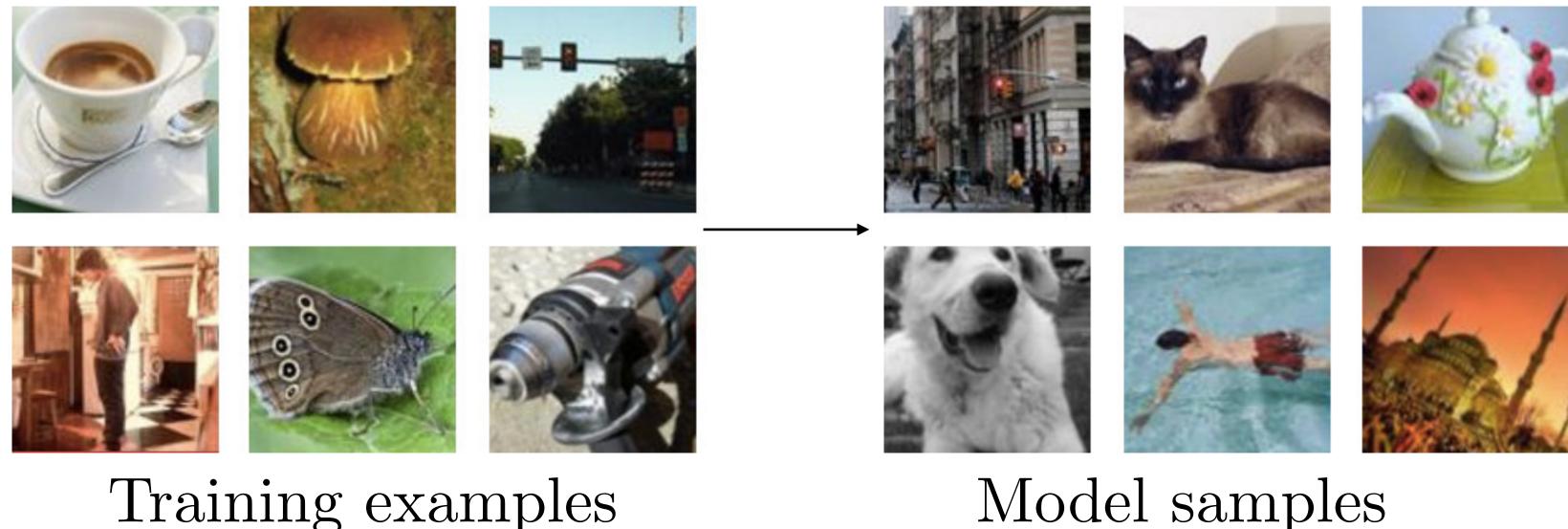
MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-GAN LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN AMGAN iGAN LSGAN InfoGAN CatGAN Generative Adversarial Networks Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN McGAN NVIDIA Distinguished Lecture Series in Machine Learning C-VAE-GAN FF-GAN USC, Los Angeles 2017-09-05 GoGAN GoGAN **BS-GAN** DR-GAN AC-GAN DCGAN CCGAN MAGAN 3D-GAN BiGAN DualGAN GAWWN CycleGAN GP-GAN **Bayesian GAN** AnoGAN EBGAN DTN ALI MARTA-GAN f-GAN A++ MAD-GAN AL-CGAN MalGAN BEGAN ArtGAN

Generative Modeling

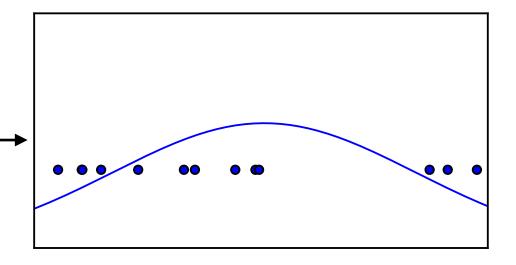
• Density estimation



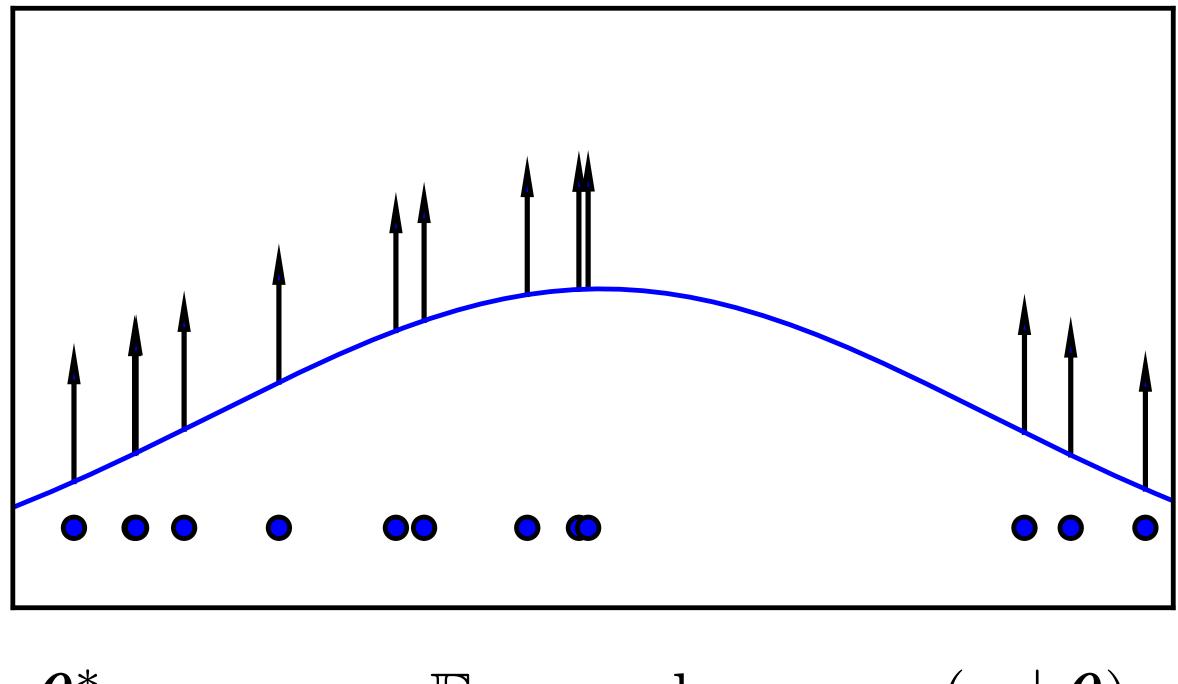
• Sample generation



Training examples

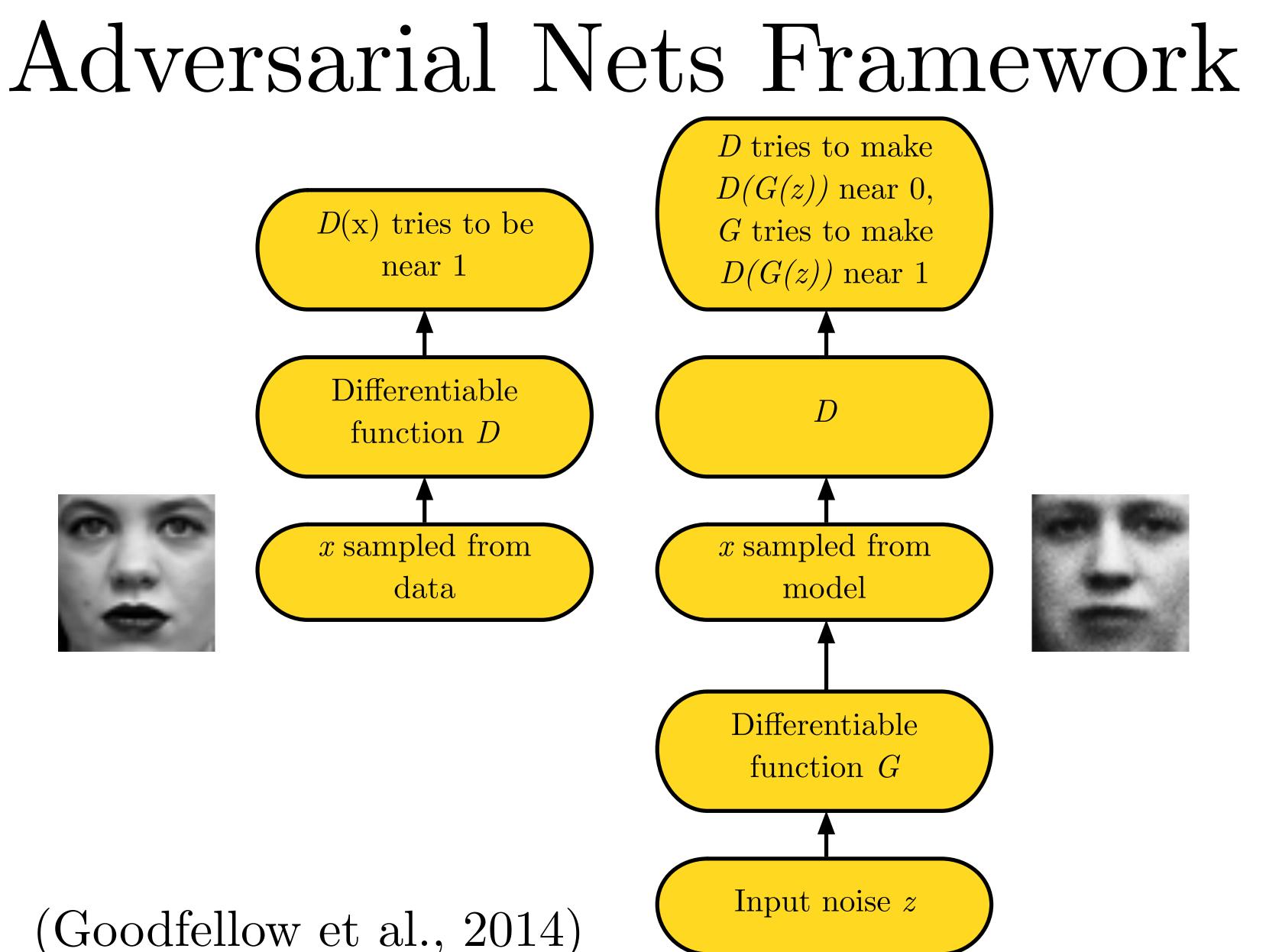


Maximum Likelihood



θ

 $\boldsymbol{\theta}^* = rg \max \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$



(Goodfellow et al., 2014)

What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

ΑΙ

OBSESSIONS

Q

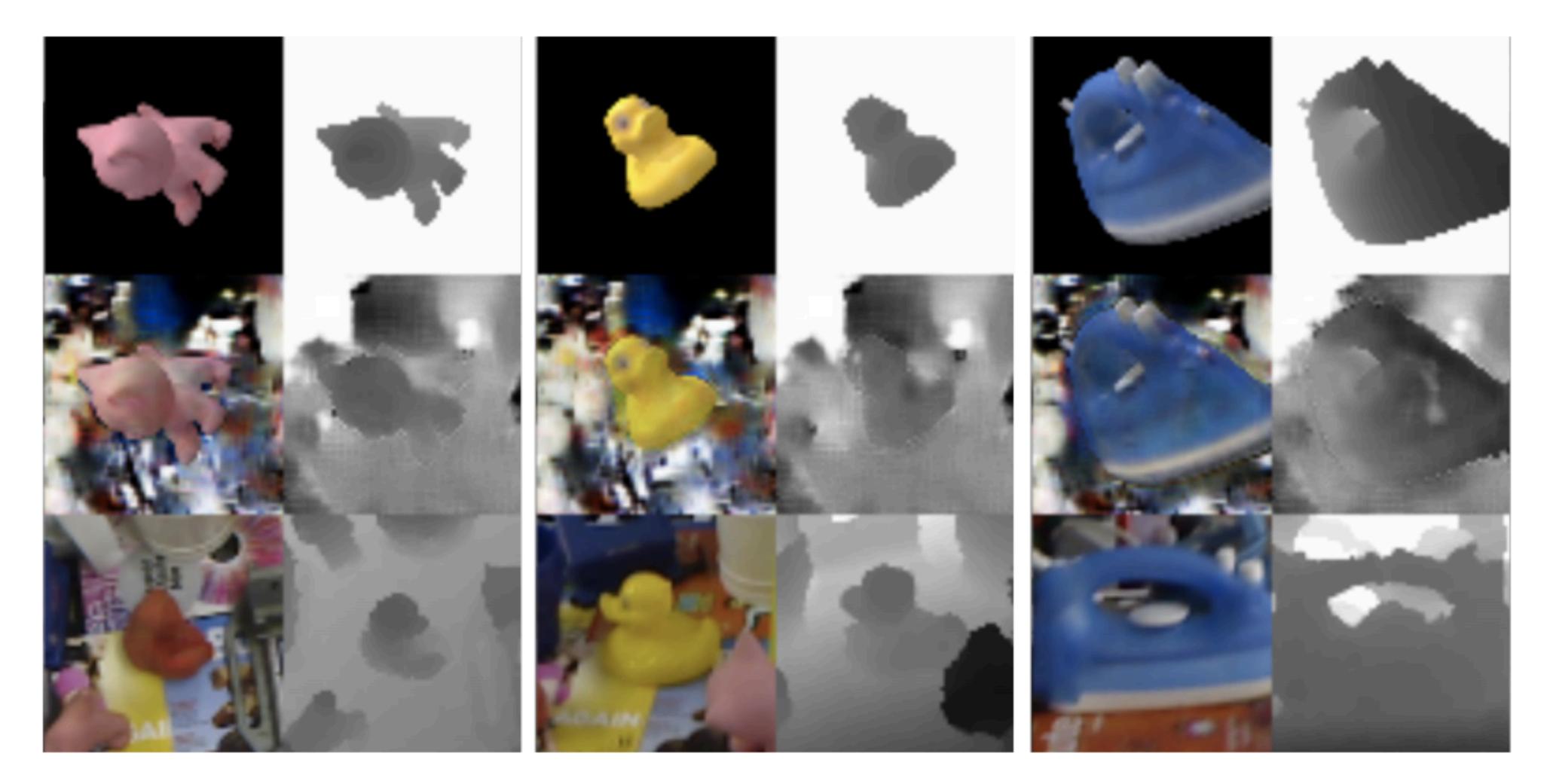
GANs for simulated training data Unlabeled Real Images

Synthetic

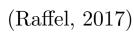
Refined

(Shrivastava et al., 2016)

GANs for domain adaptation



(Bousmalis et al., 2016)



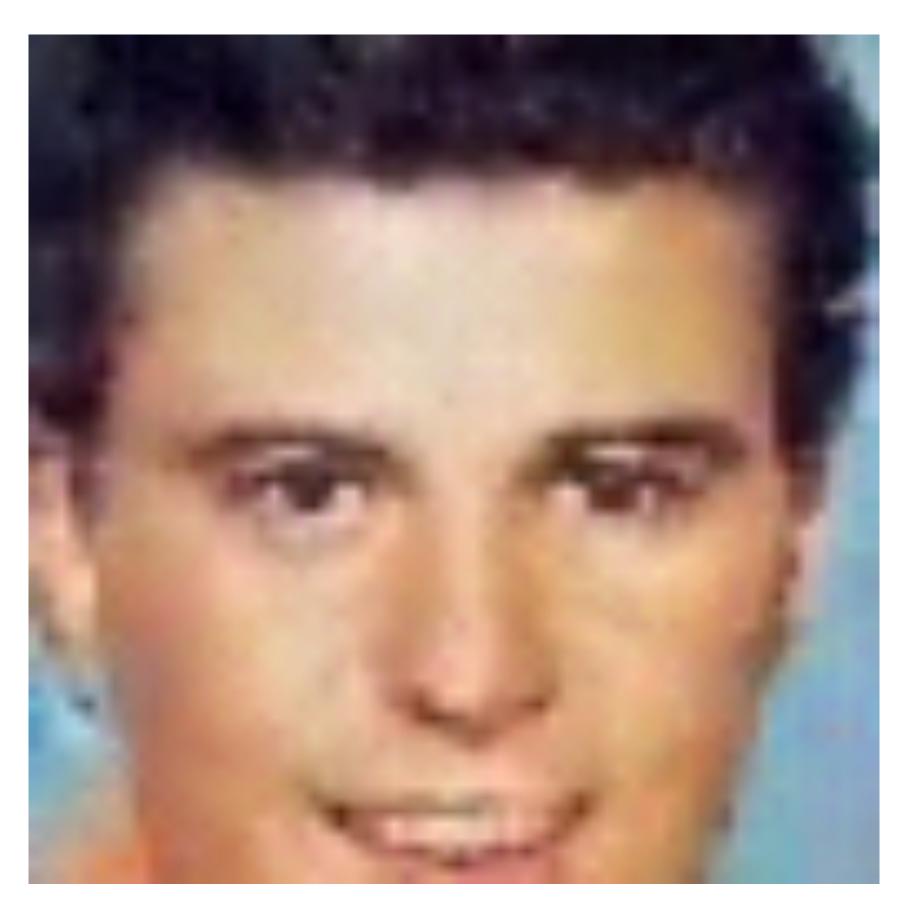
What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

What is in this image?

(Yeh et al., 2016)

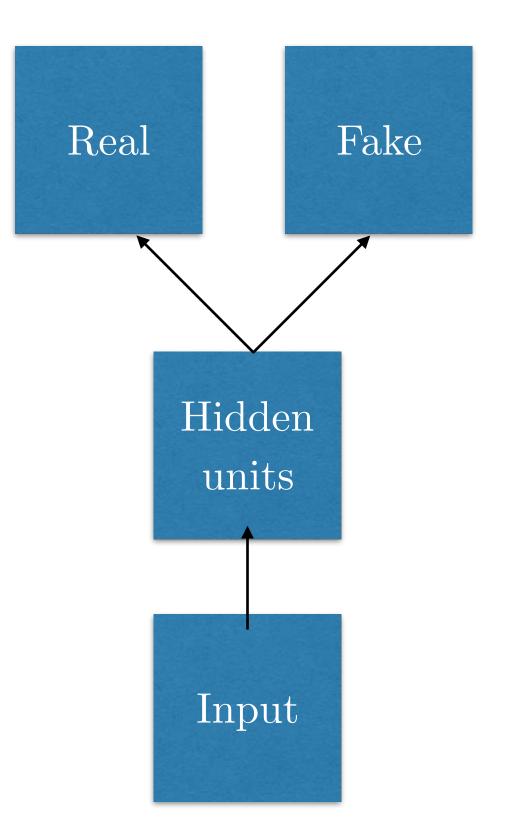
Generative modeling reveals a face



(Yeh et al., 2016)

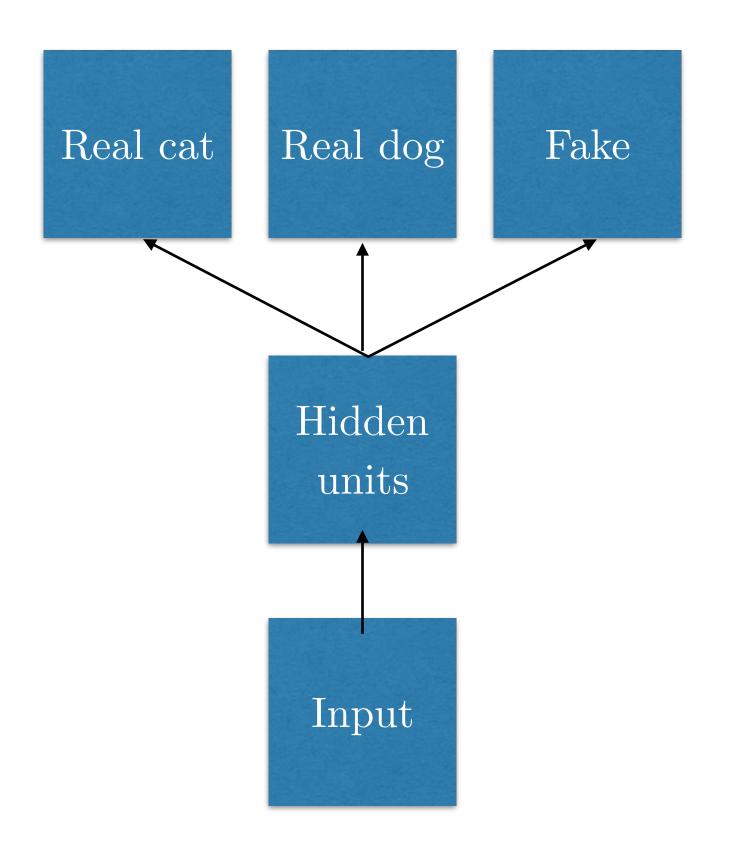
What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings



(Odena 2016, Salimans et al 2016)

Supervised Discriminator



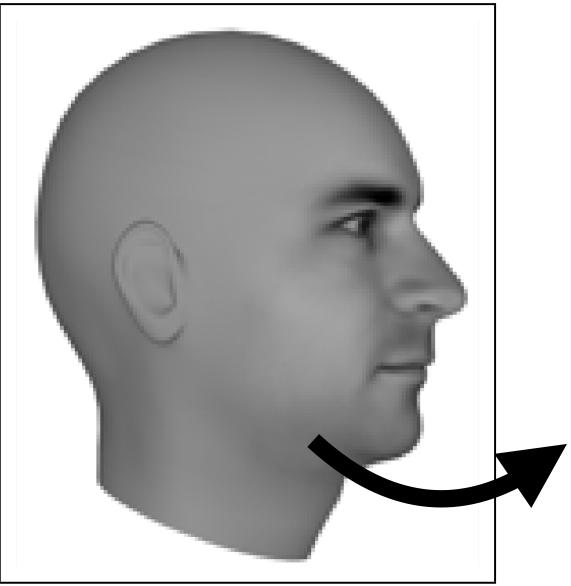
Semi-Supervised Classification

MNIST: 100 training labels -> 80 test mistakes SVHN: 1,000 training labels -> 4.3% test error CIFAR-10: 4,000 labels -> 14.4% test error (Dai et al 2017)

What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Next Video Frame Prediction

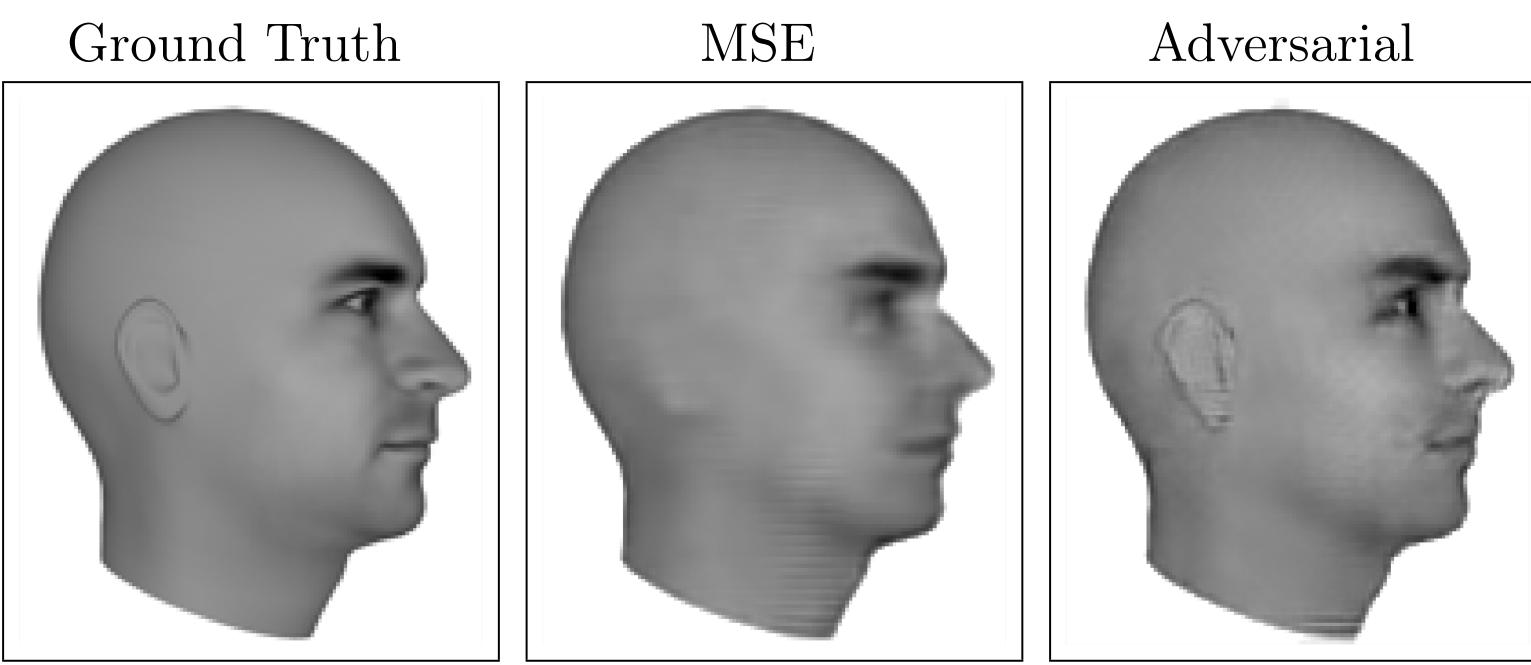


What happens next?

(Lotter et al 2016)

Ground Truth

Next Video Frame Prediction

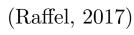


(Lotter et al 2016)

Next Video Frame(s) Prediction Mean Absolute Error

Mean Squared Error

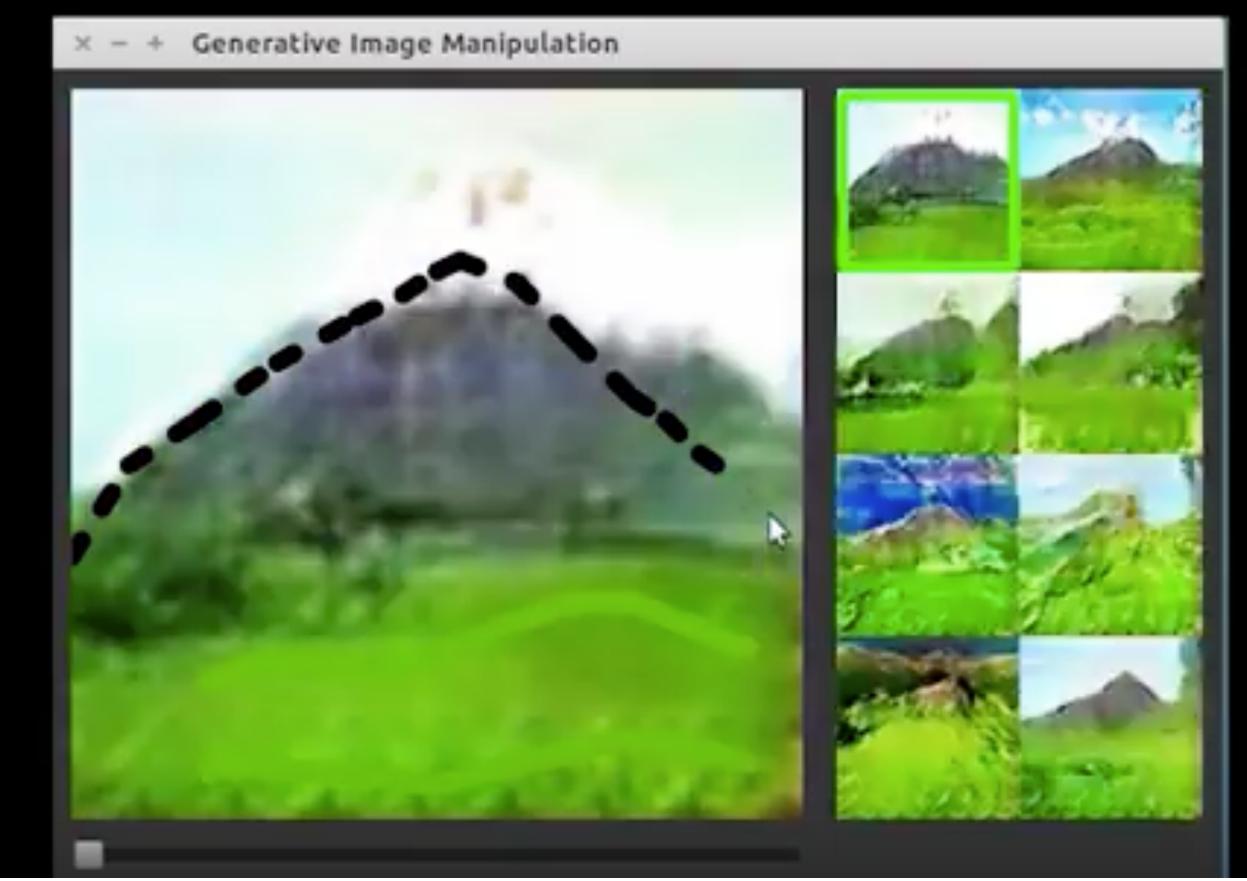
(Mathieu et al. 2015)



What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

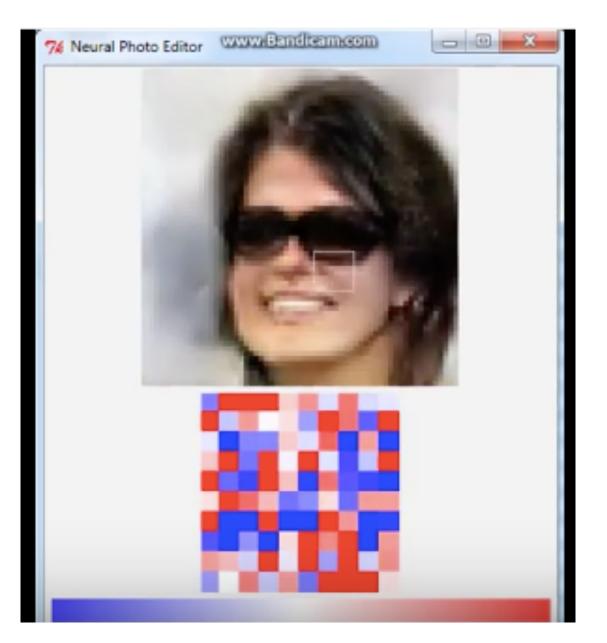
iGAN



youtube

(Zhu et al., 2016)

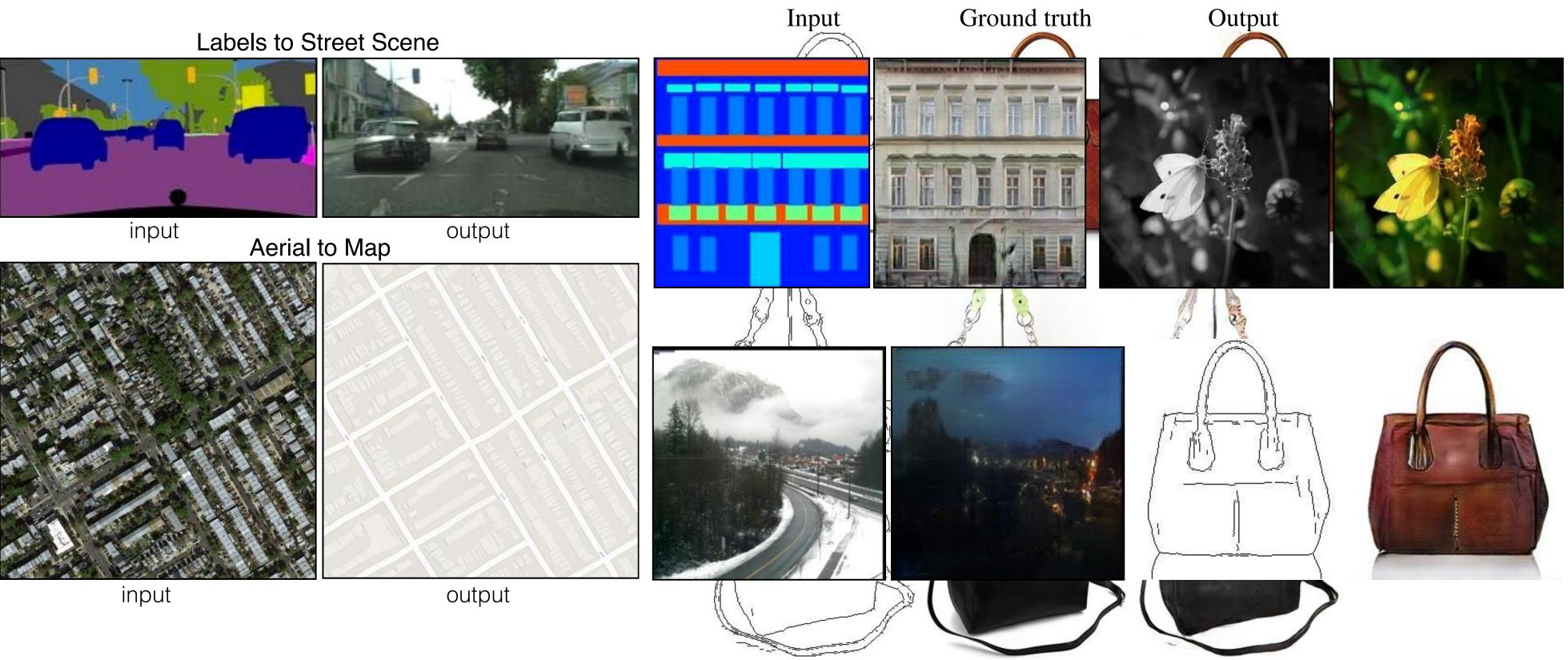
Introspective Adversarial Networks



youtube

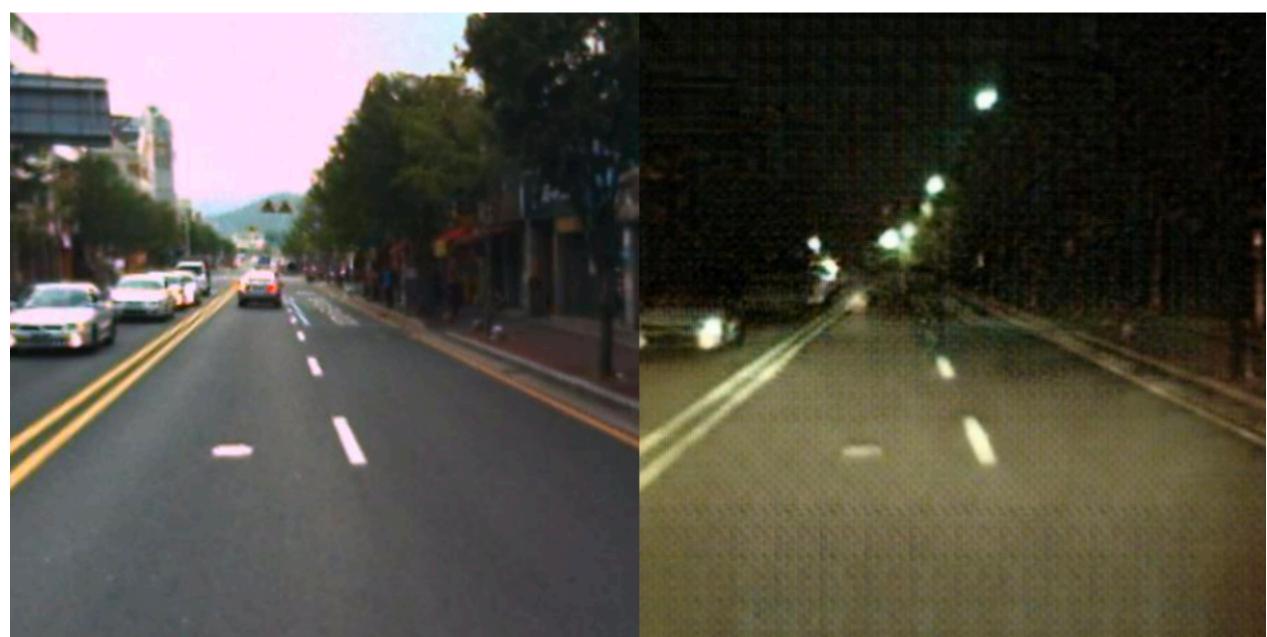
(Brock et al., 2016)

Image to Image Translation



(Isola et al., 2016)

Unsupervised Image-to-Image Translation



Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)

Text-to-Image Synthesis

This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face

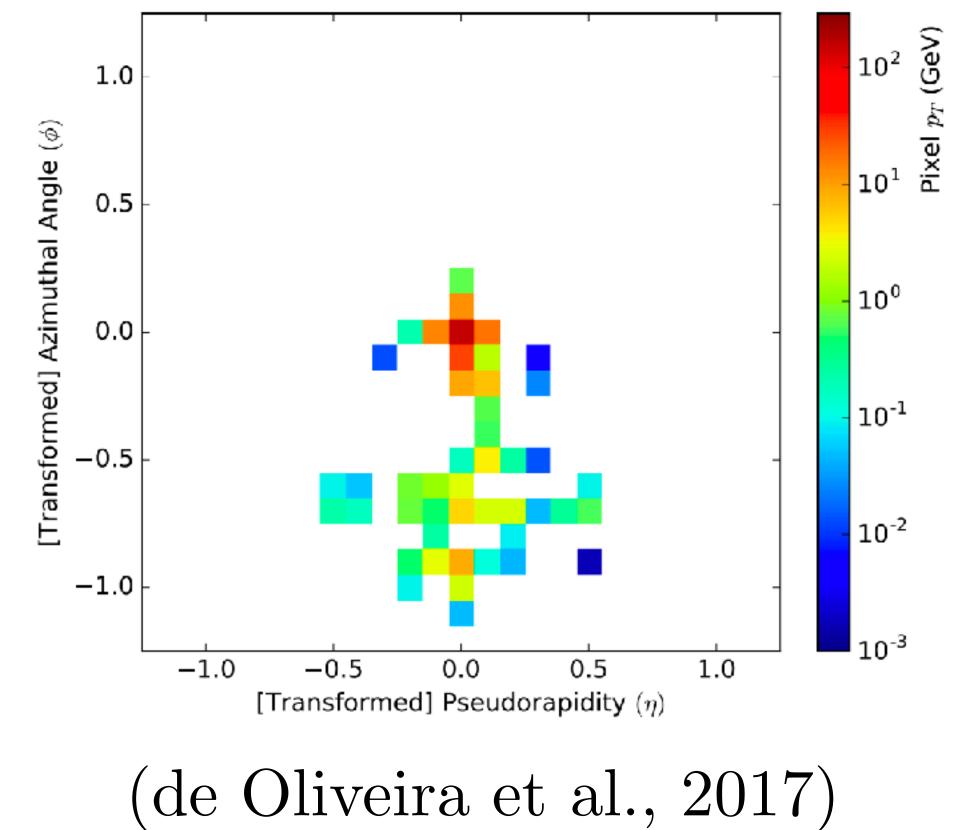
(Zhang et al., 2016)

What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Simulating particle physics

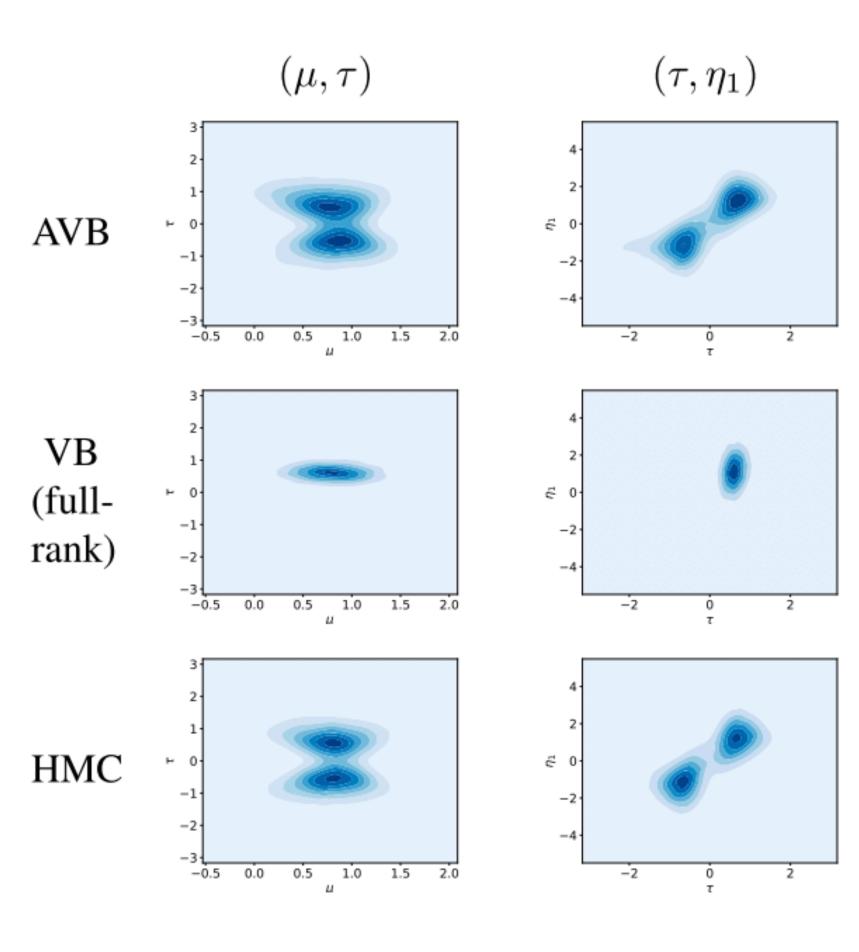
Save millions of dollars of CPU time by predicting outcomes of explicit simulations



What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Adversarial Variational Bayes

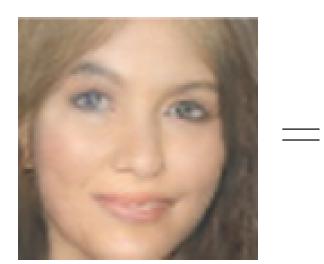


(Mescheder et al, 2017)

What can you do with GANs?

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Vector Space Arithmetic



Man Man with glasses

(Radford et al, 2015)

Woman

Woman with Glasses

Learning interpretable latent codes controlling the generation process

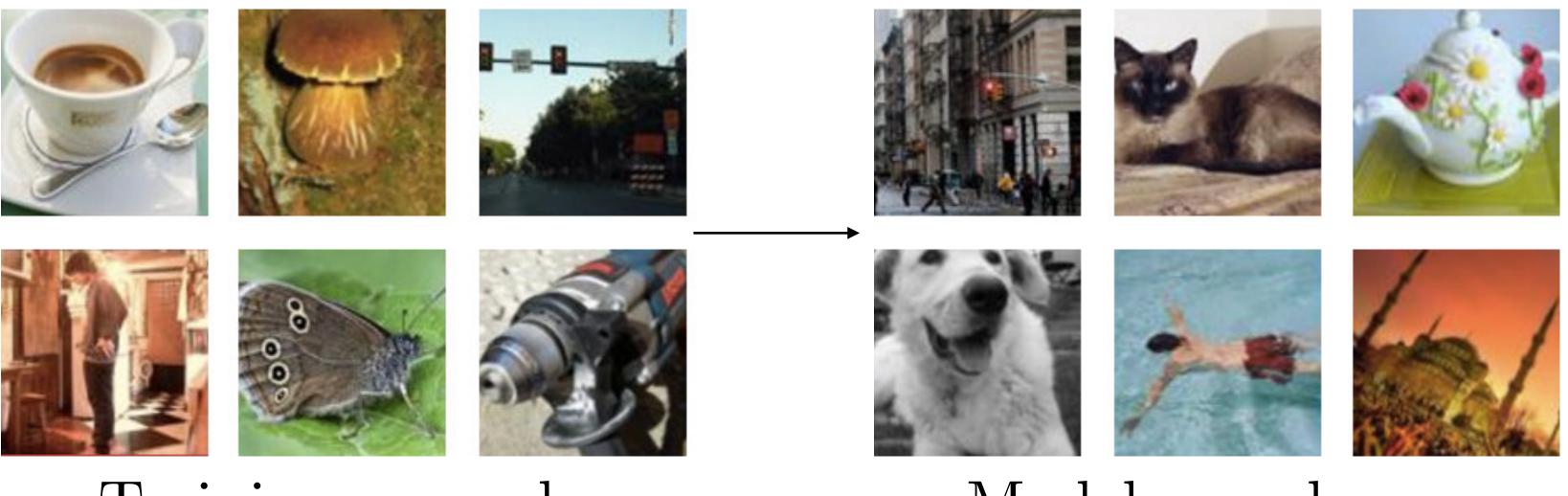
(a) Azimuth (pose)

(c) Lighting

(b) Elevation

(d) Wide or Narrow

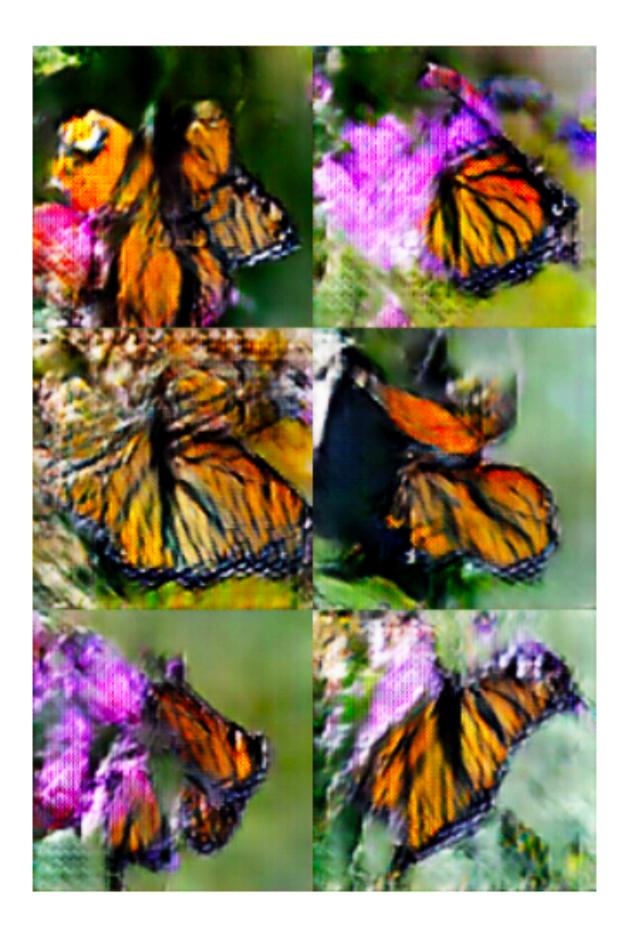
InfoGAN (Chen et al 2016)

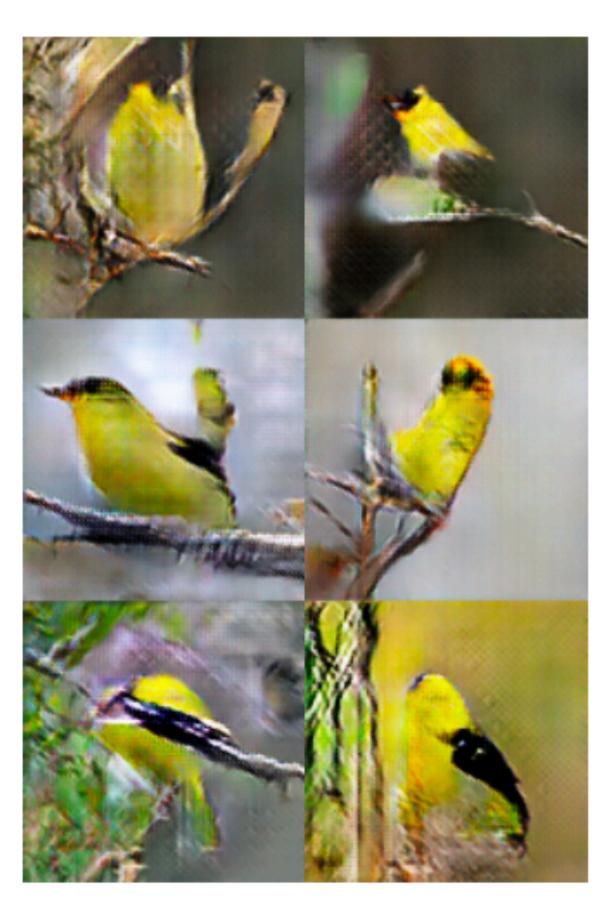


Training examples

How long until GANs can do this?

Model samples

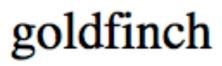




monarch butterfly

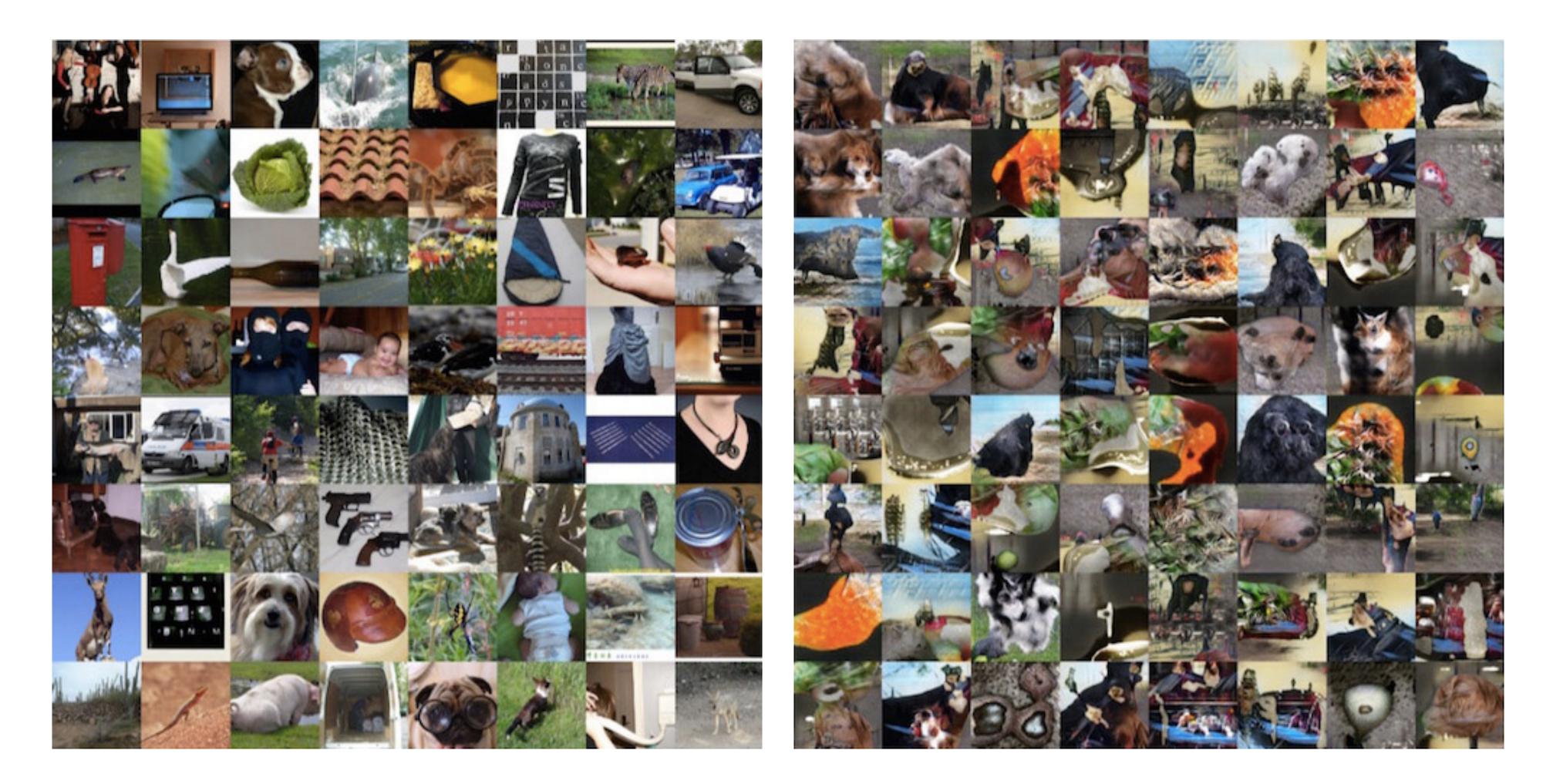
(Odena et al., 2016)

AC-GANs



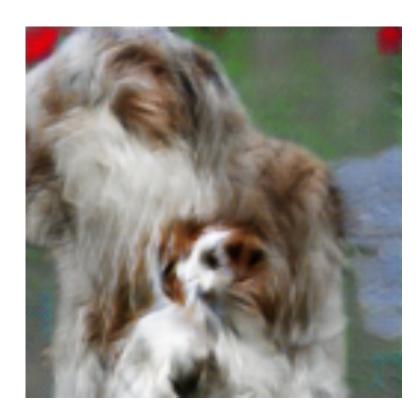
daisy

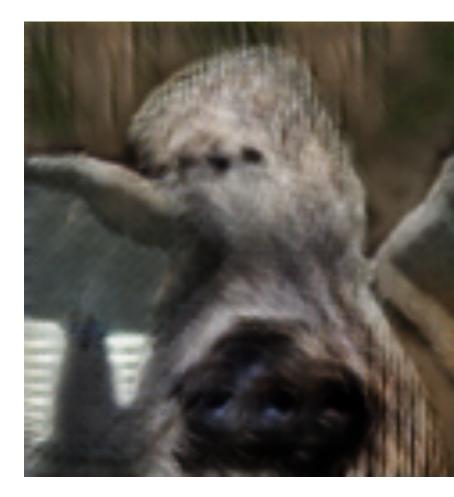
Minibatch GAN on ImageNet

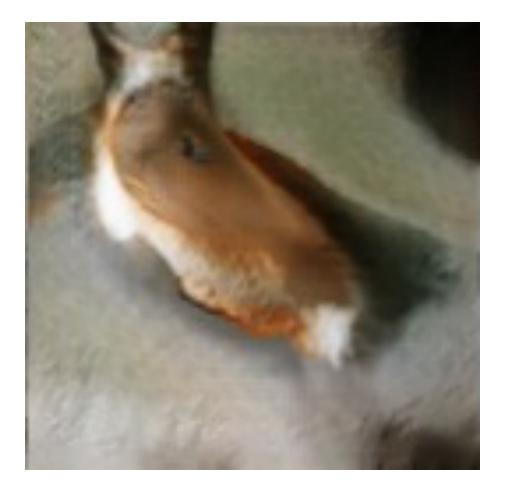


(Salimans et al., 2016)

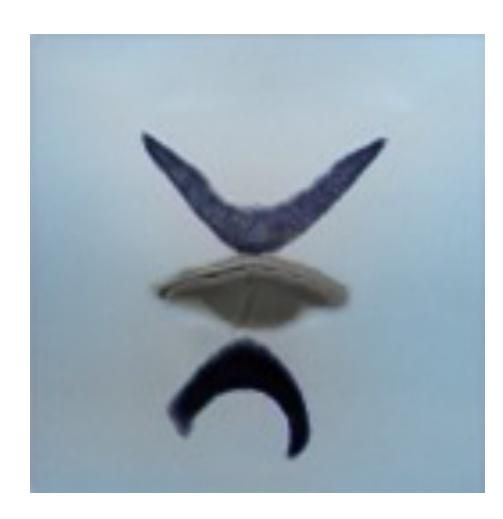
Cherry-Picked Results



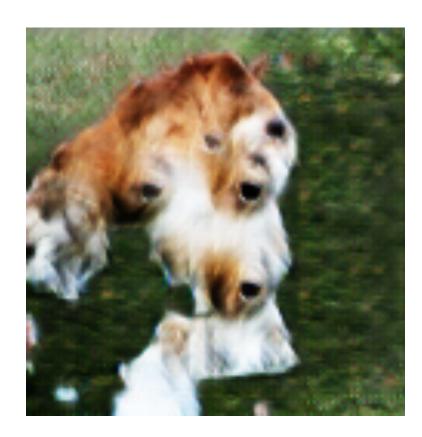


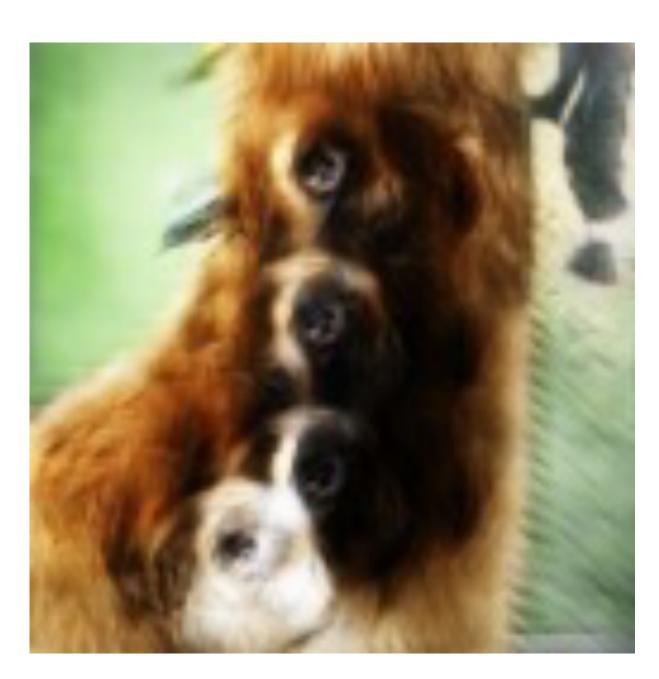




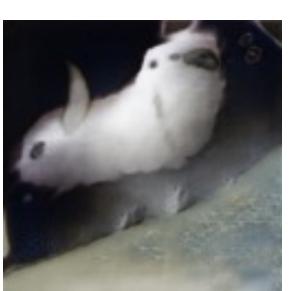


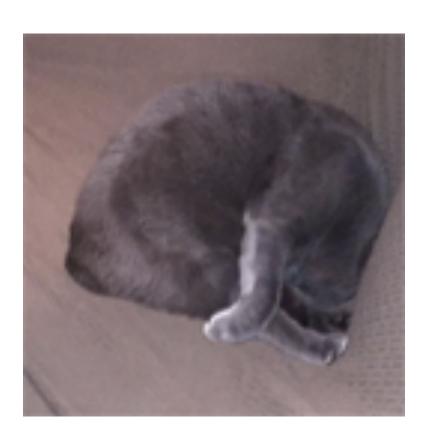
Problems with Counting

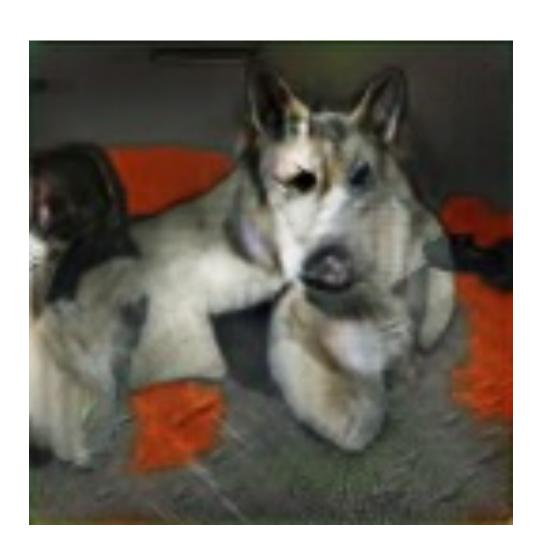


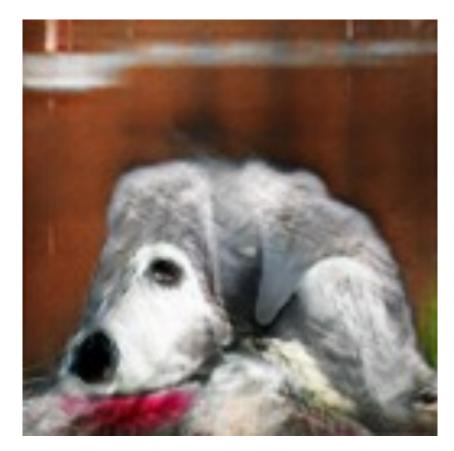


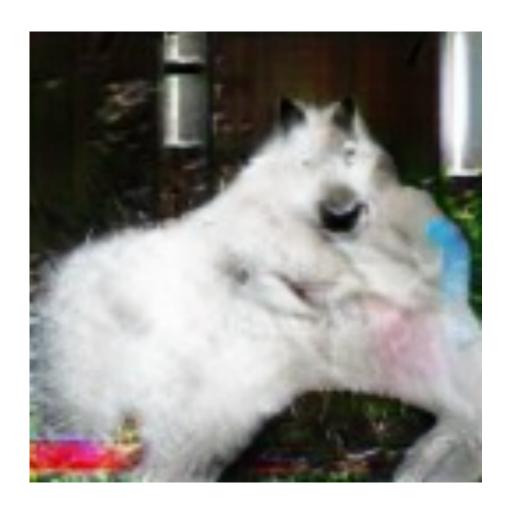
Problems with Perspective

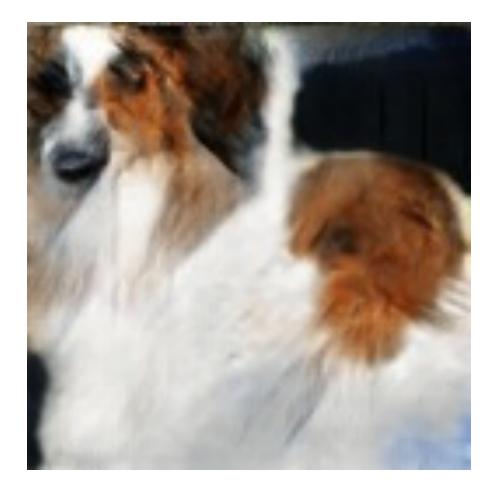


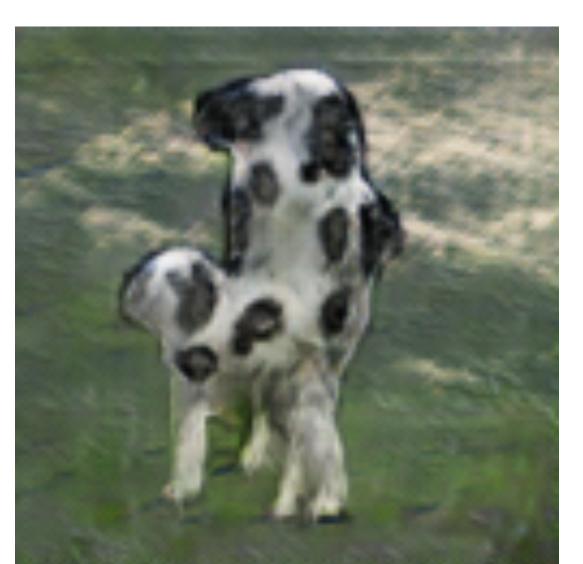








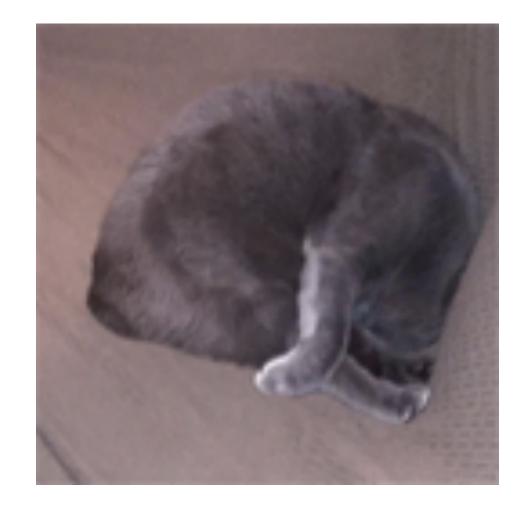




Problems with Global

Structure

This one is real



Challenges

• Non-convergence, especially mode collapse

• Discrete output variables

Non-convergence

- Heusel et al 2017)
- The convergence may be very slow because the Jacobian of the player's structure (Roth et al 2017)
- Mode collapse remains poorly understood; no widespread agreement on whether it is primarily a form of non-convergence

• Recent theoretical work argues that existing GAN training algorithms should converge under some reasonable conditions (Nagarajan and Kolter 2017,

training gradients with respect to their parameters has unfortunate eigenvalue

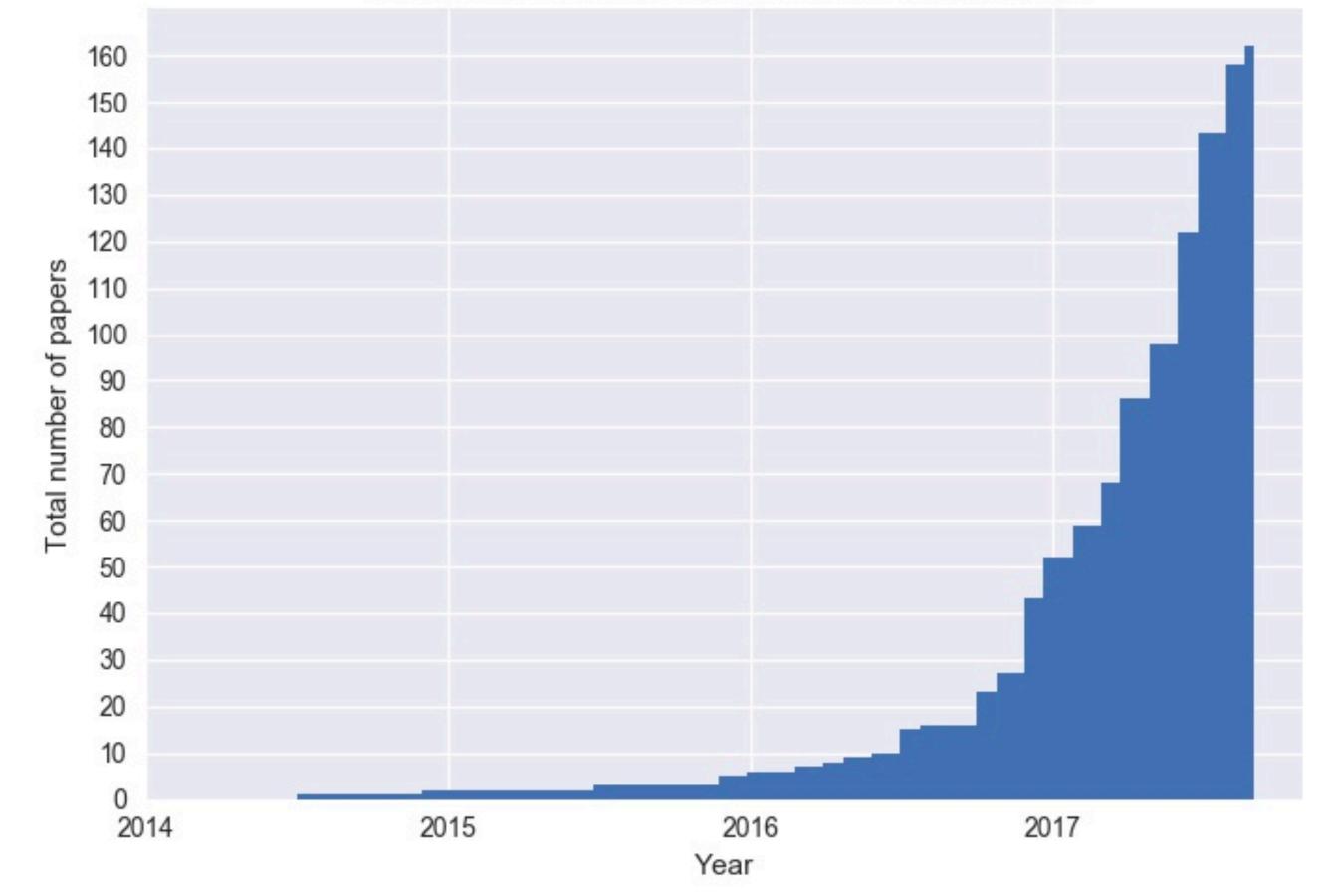
Discrete output variables

- GAN training requires the output to be differentiable with respect to the generator parameters
- NLP tasks

• Tasks like text generation for machine translation require a generator that produces discrete outputs

• Straightforward approaches like Gumbel-Softmax and REINFORCE have so far been disappointing on

Cumulative number of named GAN papers by month



https://github.com/hindupuravinash/the-gan-zoo

Track updates at the GAN Zoo

Conclusion

- tasks
- before GANs can generate arbitrary data

• GANs are generative models based on game theory

• GANs open the door to a wide range of engineering

• There are still important research challenges to solve

