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(Generative Modeling

e Density estimation

e Sample generation
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(Goodfellow 2017)



Maximum Likelihood
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Adversarial Nets Framework
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What can you do with GANSs?

e Missing data
e Semi-supervised learning
e Multiple correct answers

e Realistic generation tasks

e Learn useful embeddings

(Goodfellow 2017)



QUARTZ

TEACHING AID

Apple's first research paper tries to solve a

problem facing every company working on
Al




(GANs for simulated training data

Unlabeled Real Images
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Synthetic Refined

(Shrivastava et al., 2016)



(GANs for domain adaptation
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(Bousmalis et al., 2016)



What can you do with GANSs?

e Simulated environments and training data

e Semi-supervised learning
e Multiple correct answers
e Realistic generation tasks
e Simulation by prediction
e Solve inference problems

e Learn useful embeddings

(Goodfellow 2017)



(Generative modeling reveals a face

(Yeh et al., 2016)
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Supervised Discriminator

Hidden

units

(Odena 2016, Salimans et al 2016)

(Goodfellow 2017)
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Next Video Frame Prediction

Ground Truth

What happens next?

(Lotter et al 2016)



Next Video Frame Prediction

Ground Truth MSE Adversarial

(Lotter et al 2016)



Next Video Frame(s

Prediction
Mean Squared Error Mean Absolute Error Adversarial
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(Mathieu et al. 2015)

(Raffel, 2017)


https://arxiv.org/find/cs/1/au:+Mathieu_M/0/1/0/all/0/1
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(work by vue.ai covered by Quartz)

(Goodfellow 2017)


https://qz.com/1090267/artificial-intelligence-can-now-show-you-how-those-pants-will-fit/
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Vector Space Arithmetic
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(Goodfellow 2017)



How long until GANs can do this?
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Training examples Model Samples

(Goodfellow 2017)
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monarch butterfly goldfinch

(Odena et al., 2016) S—



Track updates at the GAN Zoo

Cumulative number of named GAN papers by month
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https:/ /github.com /hindupuravinash /the-gan-zoo

(Goodfellow 2017)



(Questions?



