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Adversarial Examples
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perturbation gibbon
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Image from “Explaining and Harnessing Adversarial Examples”, Goodfellow et al, 2014 (Goodfellow 2017)



Unreasonable Linear Extrapolation
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Plot from “Explaining and Harnessing Adversarial Examples”, Goodfellow et al, 2014 (Goodfellow 2017)



Difficult to train extremely
nonlinear hidden layers

To train:

changing this weight needs to
have a large, predictable effect

To detend:

changing this input needs

X BN

to have a small or
unpredictable effect



Idea: edit only the input layer

Train
only
this
part
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Observation: PixelRNN shows
one-hot codes work

0 255

Plot from “Pixel Recurrent Neural Networks”, van den Oord et al, 2016
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Fast Improvement FEarly in Learning

Accuracy
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(Goodfellow 2017)



Adversarial Test Accuracy

Large improvements on SVHN
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Adversarial Test Accuracy

Large Improvements against
CIFAR-10 white box attacks
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Other results

e Improvement on CIFAR-100
e (Still very broken)
e Improvement on MNIST

e Please quit caring about MNIST

(Goodfellow 2017)



Caveats

e Slight drop in accuracy on clean examples

e Only small improvement on black-box adversarial

examples

(Goodfellow 2017)



Get 1involved!

https:/ /github.com /tensorflow /cleverhans
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(Goodfellow 2017)
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