Adversarial Robustness for Aligned AI

Ian Goodfellow, Staff Research NIPS 2017 Workshop on Aligned Artificial Intelligence

Many thanks to Catherine Olsson for feedback on drafts

The Alignment Problem

(This is now fixed. Don't try it!)

Main Takeaway

• My claim: if you want to use alignment as a means of guaranteeing safety, you probably need to solve the adversarial robustness problem first

Why the "if"?

- I don't want to imply that alignment is the only or best path to providing safety mechanisms
- Some problematic aspects of alignment
 - Different people have different values
 - People can have bad values
 - Difficulty / lower probability of success. Need to model a black box, rather than a first principle (like low-impact, reversibility, etc.)
- Alignment may not be necessary
 - People can coexist and cooperate without being fully aligned

Some context: many people have already been working on alignment for decades

- Consider alignment to be "learning and respecting human preferences"
- Object recognition is "human preferences about how to categorize images"
- Sentiment analysis is "human preferences about how to categorize sentences"

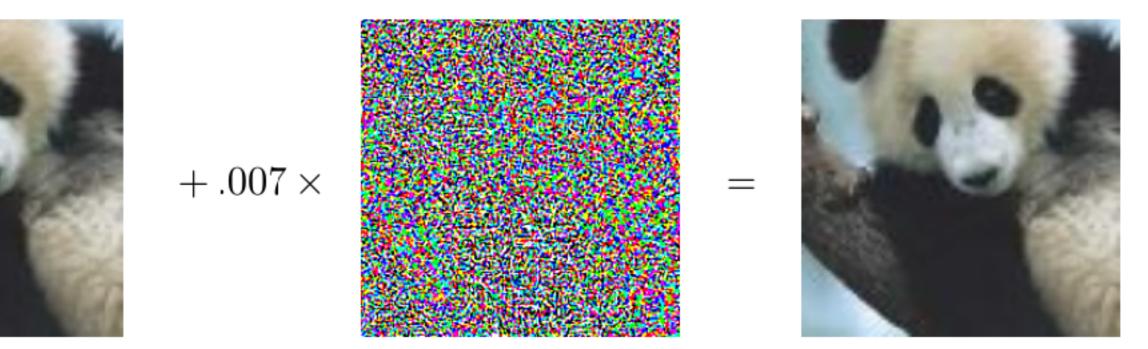
What do we want from alignment?

- Alignment is often suggested as something that is primarily a concern for RL, where an agent maximizes a reward
 - but we should want alignment for supervised learning too
- Alignment can make better products that are more *useful*
- Many want to rely on alignment to make systems *safe*
 - Our methods of providing alignment are not (yet?) reliable enough to be used for this purpose

Improving RL with human input

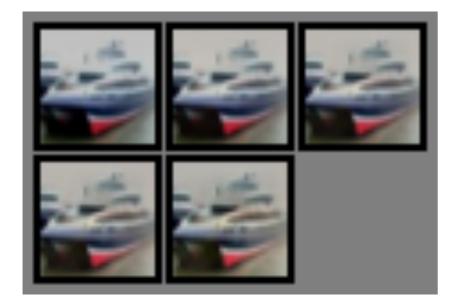
- Much work focuses on making RL more like supervised learning
 - Reward based on a model of human preferences
 - Human demonstrations
 - Human feedback
- This can be good for RL *capabilities*
 - The original AlphaGo bootstrapped from observing human games
 - OpenAI's "Learning from Human Feedback" shows successful learning to backflip
- This makes RL more like supervised learning and makes it *work*, but does it make it *robust*?

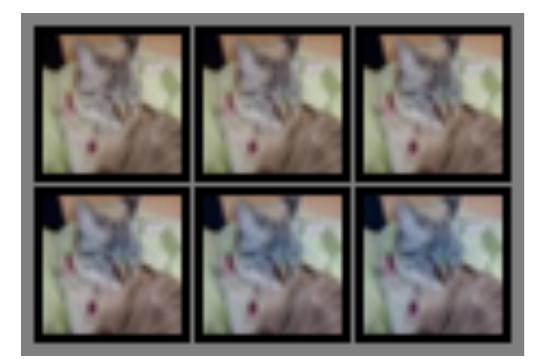
Adversarial Examples



Timeline:

"Adversarial Classification" Dalvi et al 2004: fool spam filter "Evasion Attacks Against Machine Learning at Test Time" Biggio 2013: fool neural nets Szegedy et al 2013: fool ImageNet classifiers imperceptibly Goodfellow et al 2014: cheap, closed form attack Maximizing model's estimate of human preference for input to be categorized as "airplane"





Sampling: an easier task?

- Absolutely maximizing human satisfaction might to be too hard. What about sampling from the set of things humans have liked before?
- Even though this problem is easier, it's still notoriously difficult (GANs and other generative models)
- GANs have a trick to get more data
 - Start with a small set of data that the human likes
 - Generate millions of examples and assume that the human dislikes them all

Spectrally Normalized GANs

Welsh Springer Spaniel

Palace

(Miyato et al., 2017)

Pizza

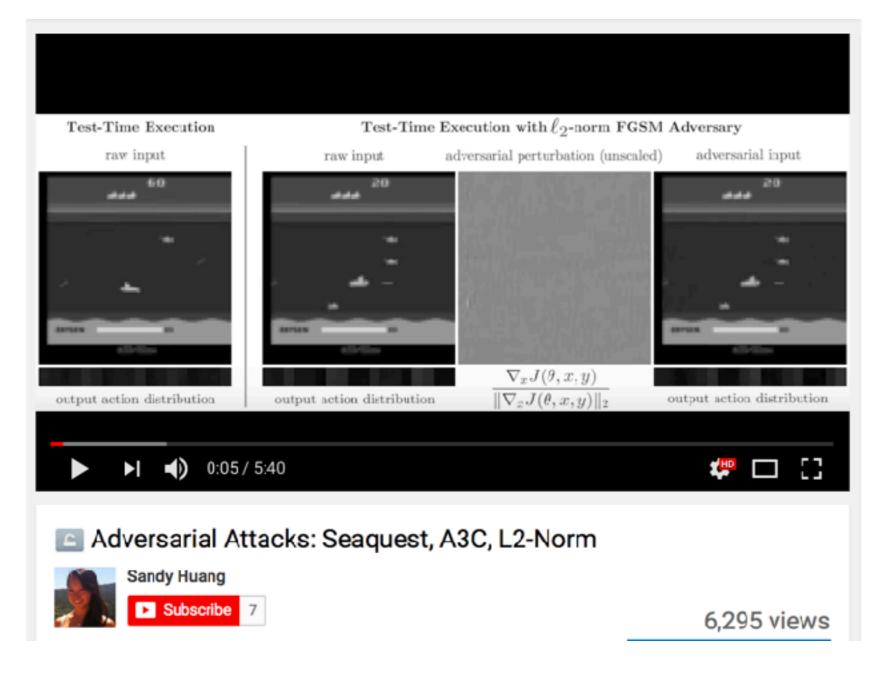
This is better than the adversarial panda, but still not a satisfying safety mechanism. Progressive GAN has learned that humans think cats are furry animals accompanied by floating symbols

(Karras et al, 2017)

Confidence

- Many proposals for achieving aligned behavior rely on accurate estimates of an agents' confidence, or rely on the agent having low confidence in some scenarios (e.g. Hadfield-Menell et al 2017)
- Unfortunately, adversarial examples often have much higher confidence than naturally occurring, correctly processed examples

Adversarial Examples for RL



 $(\underline{\text{Huang et al.}}, 2017)$

Summary so Far

- High level strategies will fail if low-level building blocks are not robust
- Reward maximizing places low-level building blocks under exactly the same situation as adversarial attack
- Current ML systems fail frequently and gracelessly under adversarial attack; have higher confidence when wrong

What are we doing about it?

- Two recent techniques for achieving adversarial robustness:
 - Thermometer codes
 - Ensemble adversarial training
- A long road ahead

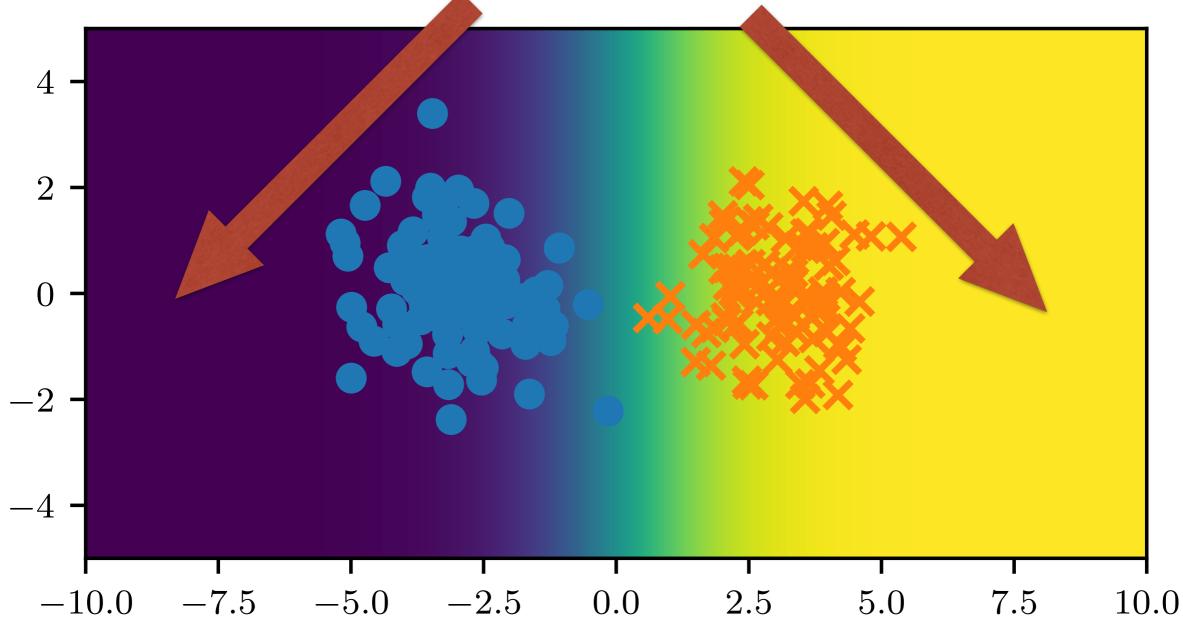
Thermometer Encoding: One Hot Way to Resist Adversarial Examples

Jacob Aurko Roy* Colin Raffel Ian Buckman* Goodfellow

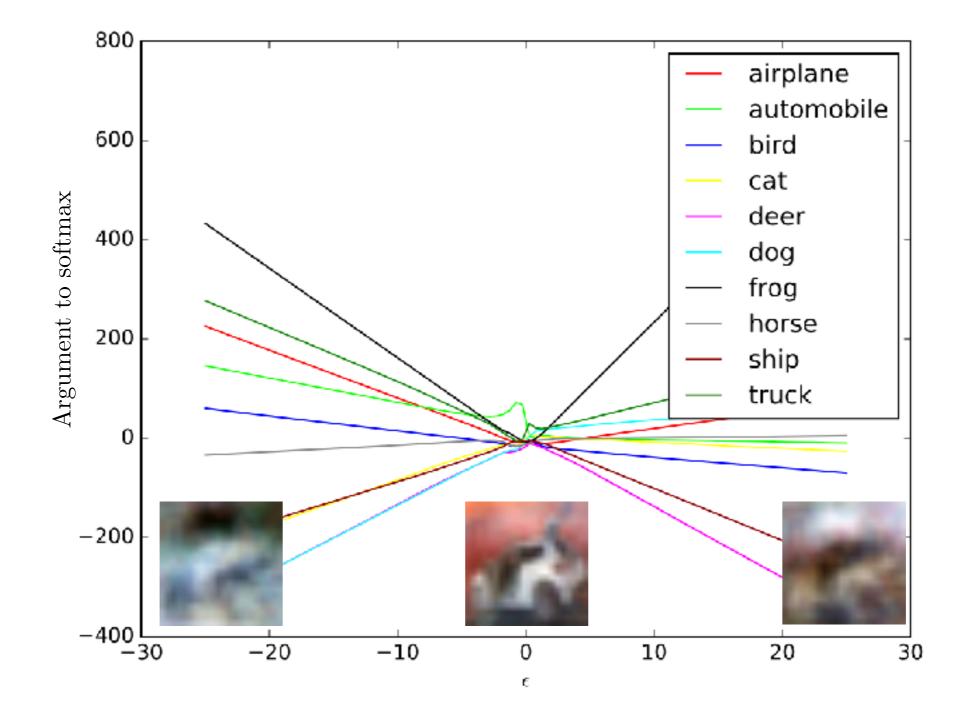
*joint first author

Linear Extrapolation

Vulnerabilities



Neural nets are "too linear"

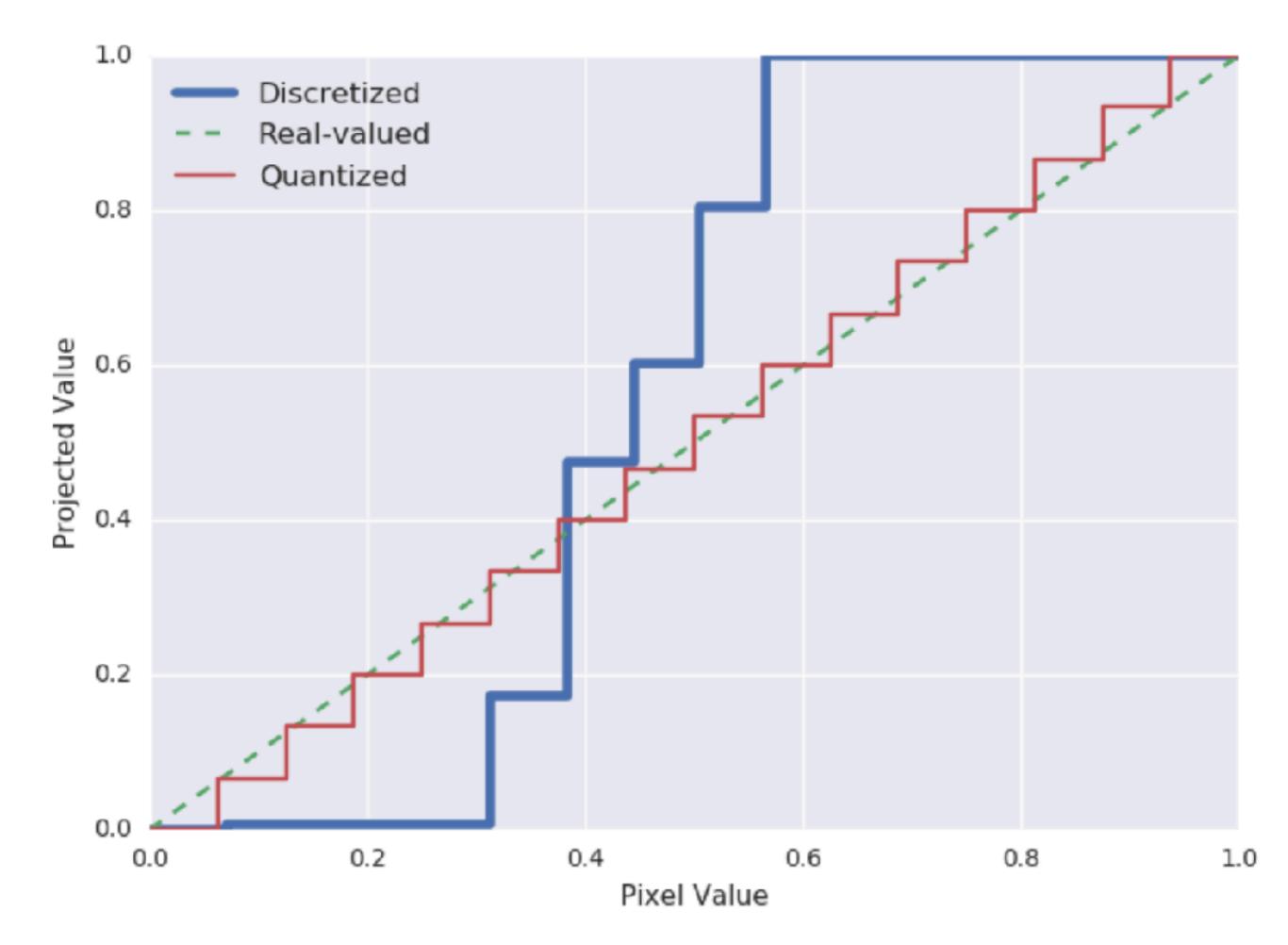


Plot from "Explaining and Harnessing Adversarial Examples", Goodfellow et al, 2014

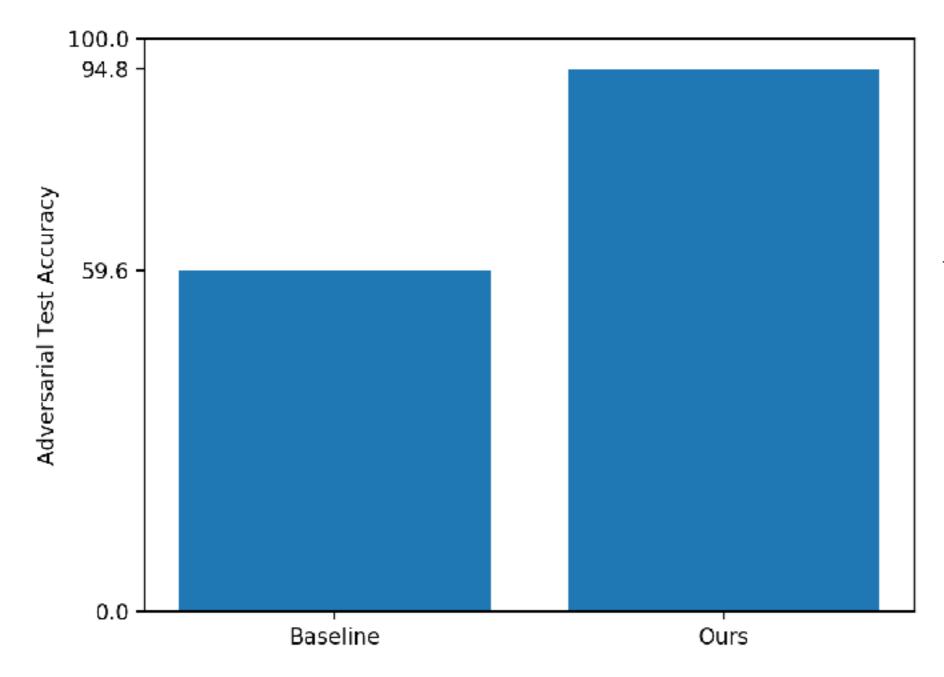
(Goodfellow 2017)

Real-valued Quantized 0.13 0.15 0.66 0.65 0.92 0.95

Discretized (one-hot)Discretized (thermometer)[010000000][01111111][00000000][000000111][00000000][00000001]

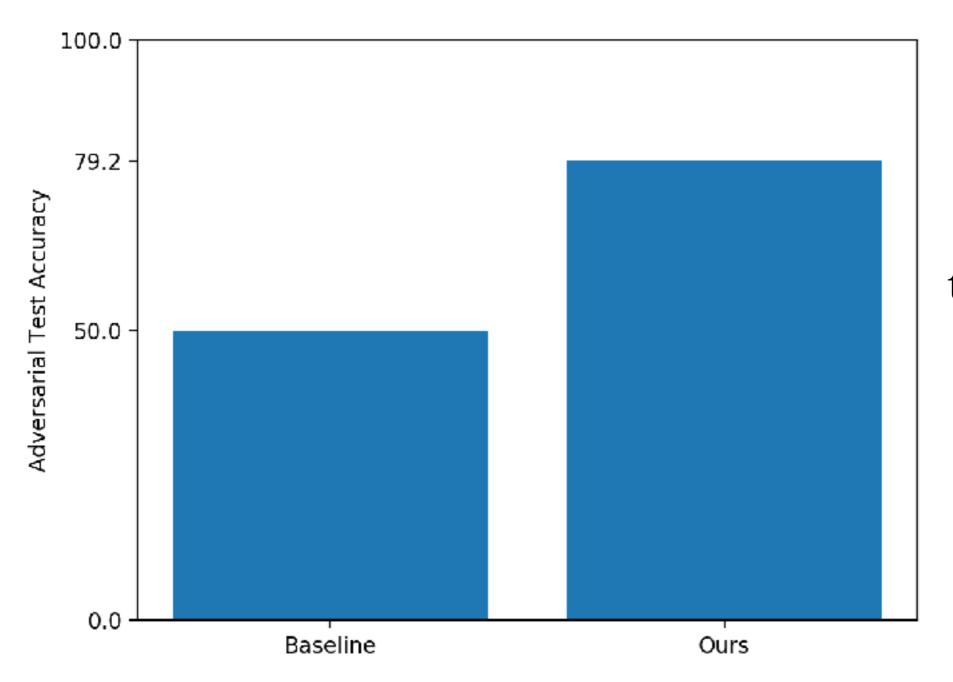


Large improvements on SVHN direct ("white box") attacks



5 years ago, this would have been SOTA on *clean* data

Large Improvements against CIFAR-10 direct ("white box") attacks



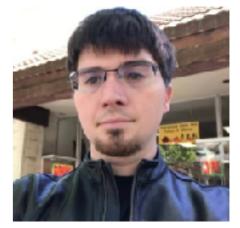
6 years ago, this would have been SOTA on *clean* data

Ensemble Adversarial Training

Florian Tramèr

Alexey Kurakin

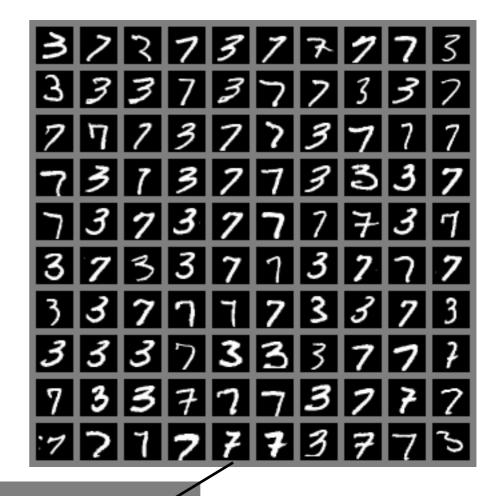
Nicolas Papernot



Ian Goodfellow

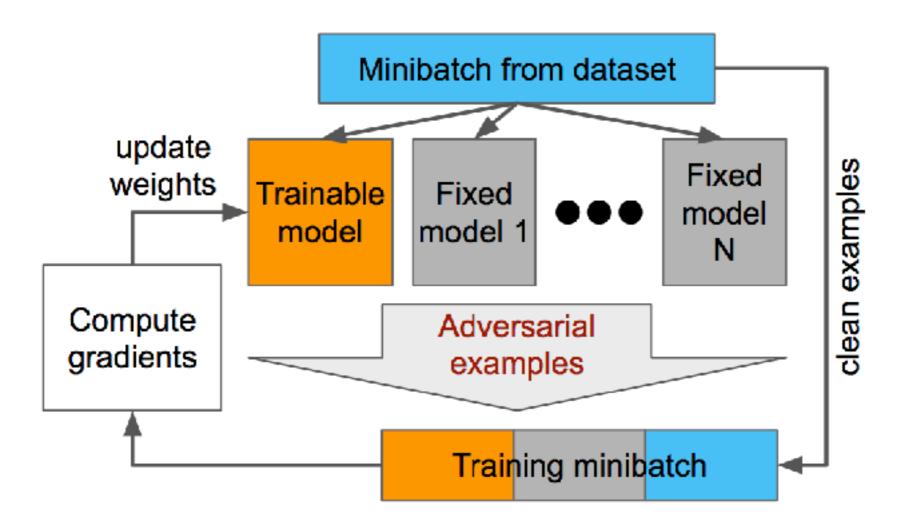
Dan Boneh

Cross-model, cross-dataset generalization

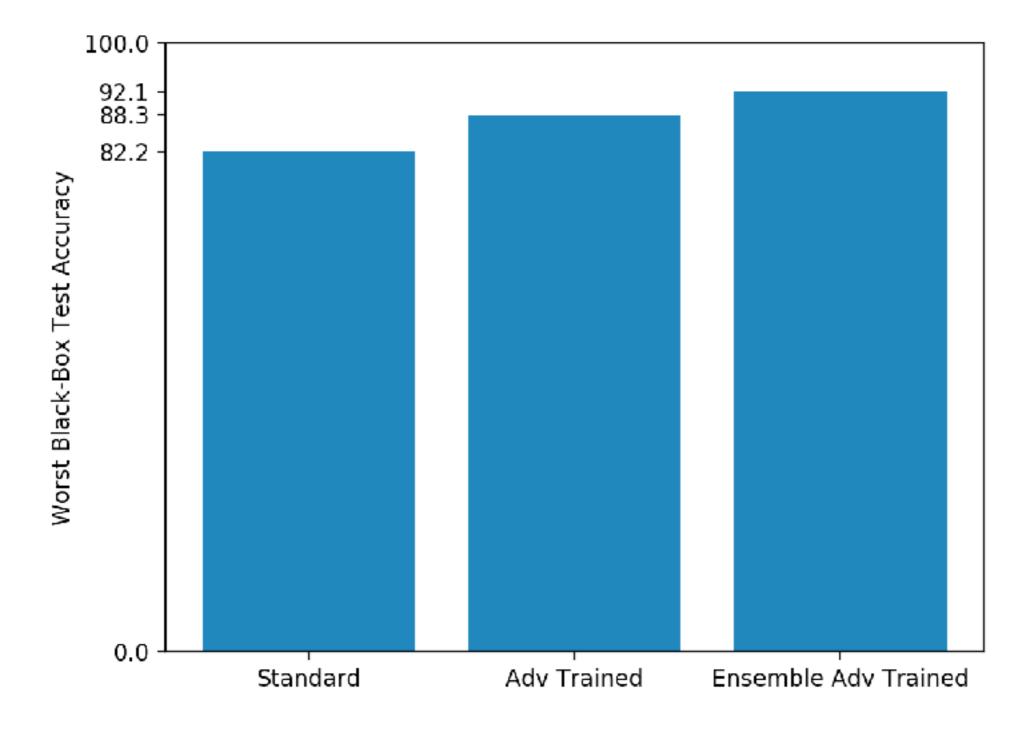


Ensemble Adversarial Training

Ensemble adversarial training



Transfer Attacks Against Inception ResNet v2 on ImageNet



Competition

Al Fight Club Could Help Save Us from a Future of Super-Smart Cyberattacks MIT Technology Review

Best defense so far on ImageNet: Ensemble adversarial training. Used as at least part of all top 10 entries in dev round 3

Future Work

- Adversarial examples in the max-norm ball are not the real problem
- For alignment: formulate the problem in terms of inputs that reward-maximizers will visit
- Verification methods
- Develop a theory of what kinds of robustness are possible
- See "Adversarial Spheres" (Gilmer et al 2017) for some arguments that it may not be feasible to build sufficiently accurate models

Get involved!

https://github.com/tensorflow/cleverhans

