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The Alignment Problem

(This is now fixed. 
Don’t try it!)
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Main Takeaway

• My claim: if you want to use alignment as a means 
of guaranteeing safety, you probably need to solve 
the adversarial robustness problem first
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Why the “if”?
• I don’t want to imply that alignment is the only or best path to providing 

safety mechanisms 

• Some problematic aspects of alignment 

• Different people have different values 

• People can have bad values 

• Difficulty / lower probability of success. Need to model a black box, 
rather than a first principle (like low-impact, reversibility, etc.) 

• Alignment may not be necessary 

• People can coexist and cooperate without being fully aligned
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Some context: many people have already 
been working on alignment for decades

• Consider alignment to be “learning and respecting 
human preferences” 

• Object recognition is “human preferences about how 
to categorize images” 

• Sentiment analysis is “human preferences about how 
to categorize sentences”



(Goodfellow 2017)

What do we want from 
alignment?

• Alignment is often suggested as something that is primarily 
a concern for RL, where an agent maximizes a reward 

• but we should want alignment for supervised learning too 

• Alignment can make better products that are more useful 

• Many want to rely on alignment to make systems safe 

• Our methods of providing alignment are not (yet?) 
reliable enough to be used for this purpose
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Improving RL with human 
input

• Much work focuses on making RL more like supervised learning 

• Reward based on a model of human preferences 

• Human demonstrations 

• Human feedback 

• This can be good for RL capabilities 

• The original AlphaGo bootstrapped from observing human games 

• OpenAI’s “Learning from Human Feedback” shows successful learning to backflip 

• This makes RL more like supervised learning and makes it work, but does it make it 
robust?
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Adversarial Examples

Timeline: 
“Adversarial Classification” Dalvi et al 2004: fool spam filter 
“Evasion Attacks Against Machine Learning at Test Time” 
Biggio 2013: fool neural nets 
Szegedy et al 2013: fool ImageNet classifiers imperceptibly 
Goodfellow et al 2014: cheap, closed form attack
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Maximizing model’s estimate of human preference 
for input to be categorized as “airplane”
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Sampling: an easier task?
• Absolutely maximizing human satisfaction might to be too hard. 

What about sampling from the set of things humans have liked 
before? 

• Even though this problem is easier, it’s still notoriously difficult 
(GANs and other generative models) 

• GANs have a trick to get more data 

• Start with a small set of data that the human likes 

• Generate millions of examples and assume that the human 
dislikes them all
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(Miyato et al., 2017)

Welsh Springer Spaniel Palace Pizza

Spectrally Normalized GANs

This is better than the adversarial panda, 
but still not a satisfying safety mechanism.
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Progressive GAN has learned that humans 
think cats are furry animals accompanied by 

floating symbols

(Karras et al, 2017)
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Confidence

• Many proposals for achieving aligned behavior rely 
on accurate estimates of an agents’ confidence, or 
rely on the agent having low confidence in some 
scenarios (e.g. Hadfield-Menell et al 2017) 

• Unfortunately, adversarial examples often have 
much higher confidence than naturally occurring, 
correctly processed examples
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Adversarial Examples for RL

(Huang et al., 2017)

https://www.youtube.com/watch?v=r2jm0nRJZdI
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Summary so Far
• High level strategies will fail if low-level building 

blocks are not robust 

• Reward maximizing places low-level building blocks 
under exactly the same situation as adversarial 
attack 

• Current ML systems fail frequently and gracelessly 
under adversarial attack; have higher confidence 
when wrong
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What are we doing about it?

• Two recent techniques for achieving adversarial 
robustness: 

• Thermometer codes 

• Ensemble adversarial training 

• A long road ahead
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Linear Extrapolation
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Neural nets are “too linear”
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Plot from “Explaining and Harnessing Adversarial Examples”, Goodfellow et al, 2014
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Large improvements on SVHN 
direct (“white box”) attacks

5 years ago, 
this would have 

been SOTA 
on clean data
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Large Improvements against 
CIFAR-10 direct (“white box”) attacks

6 years ago, 
this would have 

been SOTA 
on clean data



Ensemble Adversarial Training

Florian 
Tramèr

Alexey 
Kurakin

Nicolas 
Papernot

Ian 
Goodfellow

Dan Boneh Patrick 
McDaniel



(Goodfellow 2017)

Cross-model, cross-dataset 
generalization
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Ensemble Adversarial Training
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Transfer Attacks Against 
Inception ResNet v2 on ImageNet
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Competition

Best defense so far on ImageNet: 
Ensemble adversarial training. 

Used as at least part of all top 10 entries in dev round 3
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Future Work
• Adversarial examples in the max-norm ball are not the real 

problem 

• For alignment: formulate the problem in terms of inputs that 
reward-maximizers will visit 

• Verification methods 

• Develop a theory of what kinds of robustness are possible 

• See “Adversarial Spheres” (Gilmer et al 2017) for some arguments 
that it may not be feasible to build sufficiently accurate models
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Get involved!
https://github.com/tensorflow/cleverhans


