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Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
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Adversarial Nets Framework

(Goodfellow et al., 2014)

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1
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How long until GANs can do this?

Training examples Model samples
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Progressive GANs

(Karras et al., 2017)
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Spectrally Normalized GANs

(Miyato et al., 2017)

Welsh Springer Spaniel Palace Pizza
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Building a bridge from simple 
to complex theoretical models

GANs in pdf 
space

GANs in 
generator 

function spaceParameterized 
GANs

Finite sized 
GANs

Limited 
precision GANs
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Building a bridge from 
intuition to theory

Basic idea of 
GANs

Is there an 
equilibrium?

Is it in the 
right place?

Do we converge 
to it?

How quickly?
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Building the bridge
GANs in 
pdf space

GANs in 
generator 
function 
space Parameterized 

GANs
Finite sized 

GANs

Limited 
precision GANs
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Optimizing over densities

z

x

(Goodfellow et al, 2014)

Data samples

D(x)
generator density

generator function
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Tips and Tricks

• A good strategy to simplify a model for theoretical 
purposes is to work in function space. 

• Binary or linear models are often too different from 
neural net models to provide useful theory.  

• Use convex analysis in this function space.
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Results
• Goodfellow et al 2014: 

• Nash equilibrium exists 

• Nash equilibrium corresponds to recovering data-
generating distribution 

• Nested optimization converges 

• Kodali et al 2017: simultaneous SGD converges
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Building a bridge from simple 
to complex theoretical models
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Non-Equilibrium Mode 
Collapse

• D in inner loop: convergence to correct distribution 

• G in inner loop: place all mass on most likely point

min

G
max

D
V (G,D) 6= max

D
min

G
V (G,D)

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
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Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
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Equilibrium mode collapse

x

z

x

z

Mode collapse
Neighbors in generator 

function space are worse

(Appendix A1 of Unterthiner et al, 2017)
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Simple Non-convergence Example
• For scalar x and y, consider the value function: 

• Does this game have an equilibrium? Where is it? 

• Consider the learning dynamics of simultaneous 
gradient descent with infinitesimal learning rate 
(continuous time). Solve for the trajectory followed 
by these dynamics.

V (x, y) = xy

@x

@t

= � @

@x

V (x(t), y(t))

@y

@t

=
@

@y

V (x(t), y(t))
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Solution

This is the canonical example of 
a saddle point. 

There is an equilibrium, at 
x = 0, y = 0.
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Solution
• The dynamics are a circular orbit:

x(t) = x(0) cos(t)� y(0) sin(t)

y(t) = x(0) sin(t) + y(0) cos(t)

Discrete time 
gradient descent 

can spiral 
outward for large 

step sizes
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Tips and Tricks

• Use nonlinear dynamical systems theory to study 
behavior of optimization algorithms 

• Demonstrated and advocated especially by 
Nagarajan and Kolter 2017
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Results
• The good equilibrium is a stable fixed point (Nagarajan 

and Kolter, 2017) 

• Two-timescale updates converge (Heusel et al, 2017) 

• Their recommendation: use a different learning rate 
for G and D 

• My recommendation: decay your learning rate for G 

• Convergence is very inefficient (Mescheder et al, 2017)
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Intuition for the Jacobian

g(1) g(2)

✓(1) H(1) r✓(1)g(2)

✓(2) r✓(2)g(1) H(2)

How firmly does player 1 
want to stay in place?

How firmly does player 2 
want to stay in place?

How much can player 2 
dislodge player 1?

How much can player 1 
dislodge player 2?
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What happens for GANs?

g(1) g(2)

✓(1) H(1) r✓(1)g(2)

✓(2) r✓(2)g(1) H(2)

D

D
G

G

All zeros! 
The optimal discriminator is constant. 
Locally, the generator does not have 

any “retaining force” 



(Goodfellow 2017)

Building a bridge from simple 
to complex theoretical models

GANs in pdf 
space

GANs in 
generator 

function spaceParameterized 
GANs

Finite sized 
GANs
Limited 
precision 
GANs



(Goodfellow 2017)

Does a Nash equilibrium exist, 
in the right place?

• PDF space: yes 

• Generator function space: yes, but there can also be bad 
equilibria 

• What about for neural nets with a finite number of finite-
precision parameters? 

• Arora et al, 2017: yes… for mixtures 

• Infinite mixture 

• Approximate an infinite mixture with a finite mixture
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Open Challenges
• Design an algorithm that avoids bad equilibria in 

generator function space OR reparameterize the 
problem so that it does not have bad equilibria 

• Design an algorithm that converges rapidly to the 
equilibrium 

• Study the global convergence properties of the 
existing algorithms


