Bridging Theory and Practice of GANSs

Ilan Goodfellow, Staff Research Scientist, Google Brain

NIPS 2017 Workshop: Deep Learning: Bridging Theory and Practice
Long Beach, 2017-12-09

&




(Generative Modeling

e Density estimation

e Sample generation
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Training examples

(Goodfellow 2017)



Adversarial Nets Framework

D tries to make

D(G(z)) near 0,
D(x) tries to be G tries to make
near | D(G(z)) near 1

(Goodfellow 2017)



How long until GANs can do this?
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Training examples Model Samples

(Goodfellow 2017)



Progressive GANs

(Goodfellow 2017)

(Karras et al., 2017)



Spectrally Normalized GANSs
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Building a bridge from simple

to complex theoretical models
GANs in pdf GANS in

space generator
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Is it 1n the
right place”

Is there an

equilibrium?

Basic idea of

(GANS

.......

Building a bridge from

intuition to theory

How quickly?”’

Do we converge
to 1t7

(Goodfellow 2017)
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Optimizing over densities

P generator function

2 (Goodfellow et al, 2014)

(Goodfellow 2017



T'1ips and 'Iricks

e A good strategy to simplify a model for theoretical

purposes is to work in function space.

e Binary or linear models are often too different from

neural net models to provide useful theory.

e Use convexr analysis in this function space.

(Goodfellow 2017)



Results

e Goodfellow et al 2014:

e Nash equilibrium exists

e Nash equilibrium corresponds to recovering data-

cenerating distribution
e Nested optimization converges

e Kodali et al 2017: simultaneous SGD converges

(Goodfellow 2017)



Building a bridge from simple

to complex theoretical models
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Non-Equilibrium Mode
Collapse

min max V(G,D) # max min V(G, D)

e [ in inner loop: convergence to correct distribution

e (G in inner loop: place all mass on most likely point

Target

® - - -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

(Metz et al 2016)

(Goodfellow 2017)



FEquilibrium mode collapse

Neighbors in generator

Mode collapse function space are worse
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(Appendix A1l of Unterthiner et al, 2017)

(Goodfellow 2017)



Building a bridge from simple

to complex theoretical models
GANs in pdf GANS in

space generator
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Simple Non-convergence Example

e For scalar z and vy, consider the value function:
e Does this game have an equilibrium? Where is it?

e Consider the learning dynamics of simultaneous
oradient descent with infinitesimal learning rate

(continuous time). Solve for the trajectory followed

by these dynamics.
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Viz,y) = xy

(Goodfellow 2017)



Solution
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This is the canonical example of  -05--

y

a saddle point.

There is an equilibrium, at

r=0,y=0.

1.0

(Goodfellow 2017)



Solution

e The dynamics are a circular orbit:
z(t) = x(0) cos(t) — y(0) sin(t)
y(t) = x(0)sin(t) + y(0) cos(t)

Discrete time / \

ocradient descent
: | :L |
can spiral B TR T

outward for large

step sizes \ o /

(Goodfellow 2017)



T'1ips and 'Iricks

e Use nonlinear dynamical systems theory to study

behavior of optimization algorithms

e Demonstrated and advocated especially by
Nagarajan and Kolter 2017

(Goodfellow 2017)



Results

e The good equilibrium is a stable fixed point (Nagarajan
and Kolter, 2017)

o Two-timescale updates converge (Heusel et al, 2017)

e Their recommendation: use a different learning rate
for G and D

e My recommendation: decay your learning rate for G

e Convergence is very inefficient (Mescheder et al, 2017)

(Goodfellow 2017)



Intuition for the Jacobian

How firmly does player 1 How much can player 1
want to stay in place?’ dislodge player 27
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How much can player 2 How firmly does player 2

dislodge player 17 want to stay in place?

(Goodfellow 2017



What happens for GANSs?

\ All zeros!

The optimal discriminator i1s constant.
Locally, the generator does not have

any ‘retaining force”

(Goodfellow 2017)



Building a bridge from simple

to complex theoretical models
GANs in pdf GANS in

space generator
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Does a Nash equilibrium exist,

in the right place?

e PDF space: yes

o (Generator function space: yes, but there can also be bad
equilibria

e What about for neural nets with a finite number of finite-

precision parameters”’
e Arora et al, 2017: yes... for mixtures
e Infinite mixture

e Approximate an infinite mixture with a finite mixture

(Goodfellow 2017)



Open Challenges

e Design an algorithm that avoids bad equilibria in
cenerator function space OR reparameterize the

problem so that it does not have bad equilibria

e Design an algorithm that converges rapidly to the

equilibrium

e Study the global convergence properties of the

existing algorithms

(Goodfellow 2017)



