
Ian Goodfellow, Staff Research Scientist, Google Brain
NIPS 2017 Workshop: Deep Learning: Bridging Theory and Practice

Long Beach, 2017-12-09

Bridging Theory and Practice of GANs

3D-GAN AC-GAN

AdaGANAffGAN

AL-CGANALI

AMGAN

AnoGAN

ArtGAN

b-GAN

Bayesian GAN

BEGAN

BiGAN

B-GAN

CGAN

CCGAN

CatGAN
CoGAN

Context-RNN-GAN

C-RNN-GANC-VAE-GAN

CycleGAN

DTN

DCGAN

DiscoGAN

DR-GAN

DualGAN

EBGAN

f-GAN

FF-GAN

GAWWN

GoGAN

GP-GAN

IANiGAN

IcGANID-CGAN

InfoGAN
LAPGAN

LR-GAN
LS-GAN

LSGAN

MGAN

MAGAN

MAD-GAN

MalGANMARTA-GAN

McGAN

MedGAN

MIX+GAN

MPM-GAN

GMAN
alpha-GAN

WGAN-GP

DRAGAN

Progressive GAN

SN-GAN

(Goodfellow 2017)

Generative Modeling
• Density estimation

• Sample generation

Training examples Model samples

(Goodfellow 2017)

Adversarial Nets Framework

(Goodfellow et al., 2014)

x sampled from
data

Differentiable
function D

D(x) tries to be
near 1

Input noise z

Differentiable
function G

x sampled from
model

D

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

(Goodfellow 2017)

How long until GANs can do this?

Training examples Model samples

(Goodfellow 2017)

Progressive GANs

(Karras et al., 2017)

(Goodfellow 2017)

Spectrally Normalized GANs

(Miyato et al., 2017)

Welsh Springer Spaniel Palace Pizza

(Goodfellow 2017)

Building a bridge from simple
to complex theoretical models

GANs in pdf
space

GANs in
generator

function spaceParameterized
GANs

Finite sized
GANs

Limited
precision GANs

(Goodfellow 2017)

Building a bridge from
intuition to theory

Basic idea of
GANs

Is there an
equilibrium?

Is it in the
right place?

Do we converge
to it?

How quickly?

(Goodfellow 2017)

Building the bridge
GANs in
pdf space

GANs in
generator
function
space Parameterized

GANs
Finite sized

GANs

Limited
precision GANs

(Goodfellow 2017)

Optimizing over densities

z

x

(Goodfellow et al, 2014)

Data samples

D(x)
generator density

generator function

(Goodfellow 2017)

Tips and Tricks

• A good strategy to simplify a model for theoretical
purposes is to work in function space.

• Binary or linear models are often too different from
neural net models to provide useful theory.

• Use convex analysis in this function space.

(Goodfellow 2017)

Results
• Goodfellow et al 2014:

• Nash equilibrium exists

• Nash equilibrium corresponds to recovering data-
generating distribution

• Nested optimization converges

• Kodali et al 2017: simultaneous SGD converges

(Goodfellow 2017)

Building a bridge from simple
to complex theoretical models

GANs in pdf
space

GANs in
generator function

space
Parameterized

GANs
Finite sized

GANs

Limited
precision GANs

(Goodfellow 2017)

Non-Equilibrium Mode
Collapse

• D in inner loop: convergence to correct distribution

• G in inner loop: place all mass on most likely point

min

G
max

D
V (G,D) 6= max

D
min

G
V (G,D)

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Metz et al 2016)

(Goodfellow 2017)

Equilibrium mode collapse

x

z

x

z

Mode collapse
Neighbors in generator

function space are worse

(Appendix A1 of Unterthiner et al, 2017)

(Goodfellow 2017)

Building a bridge from simple
to complex theoretical models

GANs in pdf
space

GANs in
generator

function spaceParameterized
GANs

Finite sized
GANs

Limited
precision GANs

(Goodfellow 2017)

Simple Non-convergence Example
• For scalar x and y, consider the value function:

• Does this game have an equilibrium? Where is it?

• Consider the learning dynamics of simultaneous
gradient descent with infinitesimal learning rate
(continuous time). Solve for the trajectory followed
by these dynamics.

V (x, y) = xy

@x

@t

= � @

@x

V (x(t), y(t))

@y

@t

=
@

@y

V (x(t), y(t))

(Goodfellow 2017)

Solution

This is the canonical example of
a saddle point.

There is an equilibrium, at
x = 0, y = 0.

(Goodfellow 2017)

Solution
• The dynamics are a circular orbit:

x(t) = x(0) cos(t)� y(0) sin(t)

y(t) = x(0) sin(t) + y(0) cos(t)

Discrete time
gradient descent

can spiral
outward for large

step sizes

(Goodfellow 2017)

Tips and Tricks

• Use nonlinear dynamical systems theory to study
behavior of optimization algorithms

• Demonstrated and advocated especially by
Nagarajan and Kolter 2017

(Goodfellow 2017)

Results
• The good equilibrium is a stable fixed point (Nagarajan

and Kolter, 2017)

• Two-timescale updates converge (Heusel et al, 2017)

• Their recommendation: use a different learning rate
for G and D

• My recommendation: decay your learning rate for G

• Convergence is very inefficient (Mescheder et al, 2017)

(Goodfellow 2017)

Intuition for the Jacobian

g(1) g(2)

✓(1) H(1) r✓(1)g(2)

✓(2) r✓(2)g(1) H(2)

How firmly does player 1
want to stay in place?

How firmly does player 2
want to stay in place?

How much can player 2
dislodge player 1?

How much can player 1
dislodge player 2?

(Goodfellow 2017)

What happens for GANs?

g(1) g(2)

✓(1) H(1) r✓(1)g(2)

✓(2) r✓(2)g(1) H(2)

D

D
G

G

All zeros!
The optimal discriminator is constant.
Locally, the generator does not have

any “retaining force”

(Goodfellow 2017)

Building a bridge from simple
to complex theoretical models

GANs in pdf
space

GANs in
generator

function spaceParameterized
GANs

Finite sized
GANs
Limited
precision
GANs

(Goodfellow 2017)

Does a Nash equilibrium exist,
in the right place?

• PDF space: yes

• Generator function space: yes, but there can also be bad
equilibria

• What about for neural nets with a finite number of finite-
precision parameters?

• Arora et al, 2017: yes… for mixtures

• Infinite mixture

• Approximate an infinite mixture with a finite mixture

(Goodfellow 2017)

Open Challenges
• Design an algorithm that avoids bad equilibria in

generator function space OR reparameterize the
problem so that it does not have bad equilibria

• Design an algorithm that converges rapidly to the
equilibrium

• Study the global convergence properties of the
existing algorithms

