MedGAN ID-CGAN Progressive GAN LR-GAN CGAN ICGAN DiscoGANMPM-GAN AdaGAN b-GAN LS-GAN AffGAN LAPGAN iGAN LSGAN InfoGAN CatGAN SN-GAN AMGAN Bridging Theory and Practice of GANs Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN McGAN NIPS 2017 Workshop: Deep Learning: Bridging Theory and Practice MGAN FF-GAN **B-GAN** Long Beach, 2017-12-09 GoGAN C-VAE-GAN DRAGAN MAGAN 3D-GAN GMAN BIGAN GAWWN DualGAN CycleGAN alpha-GAN **GP-GAN Bavesian GAN** AnoGAN WGAN-GP EBGAN DTN ALI MARTA-GAN f-GAN Art MAD-GAN BEGAN AL-CGAN MalGAN ArtGAN

Generative Modeling

• Density estimation

• Sample generation

Training examples

Model samples

(Goodfellow et al., 2014)

Training examples

How long until GANs can do this?

Model samples

Progressive GANs

(Karras et al., 2017)

Spectrally Normalized GANs

Welsh Springer Spaniel

Palace

Pizza

(Miyato et al., 2017)

Building a bridge from simple to complex theoretical models GANs in

generator Parameterized function space GANS

> Finite sized GANs

Limited precision GANs

Building a bridge from intuition to theory

Is it in the right place? Is there an equilibrium? Basic idea of GANs

How quickly?

Do we converge to it?

Tips and Tricks

- A good strategy to simplify a model for theoretical purposes is to work in *function space*.
 - Binary or linear models are often too different from neural net models to provide useful theory.
- Use *convex analysis* in this function space.

Results

- Goodfellow et al 2014:
 - Nash equilibrium exists
 - generating distribution
 - Nested optimization converges
- Kodali et al 2017: simultaneous SGD converges

• Nash equilibrium corresponds to recovering data-

Non-Equilibrium Mode Collapse

- D in inner loop: convergence to correct distribution
- G in inner loop: place all mass on most likely point

 $\min_{G} \max_{D} V(G, D) \neq \max_{D} \min_{G} V(G, D)$

Equilibrium mode collapse

Neighbors in generator function space are worse

(Appendix A1 of Unterthiner et al, 2017)

Building a bridge from simple to complex theoretical models

generator Parameterized function space GANS Finite sized

Limited precision GANs

GANs

Simple Non-convergence Example

- For scalar x and y, consider the value function:
- Consider the learning dynamics of simultaneous by these dynamics.

$$\frac{\partial x}{\partial t} = -\frac{\partial}{\partial x} V(x(t), y(t))$$
$$\frac{\partial y}{\partial t} = \frac{\partial}{\partial y} V(x(t), y(t))$$

V(x, y) = xy• Does this game have an equilibrium? Where is it?

gradient descent with infinitesimal learning rate (continuous time). Solve for the trajectory followed

Solution

This is the canonical example of a saddle point.

There is an equilibrium, at x = 0, y = 0.

Solution

• The dynamics are a circular orbit:

$$\begin{aligned} x(t) &= x(0) \\ y(t) &= x(0) \\ \end{aligned}$$

Discrete time gradient descent can spiral outward for large step sizes

 $\cos(t) - y(0)\sin(t)$ $\sin(t) + y(0)\cos(t)$

Tips and Tricks

- behavior of optimization algorithms
- Demonstrated and advocated especially by Nagarajan and Kolter 2017

• Use nonlinear dynamical systems theory to study

Results

- The good equilibrium is a stable fixed point (Nagarajan and Kolter, 2017)
- Two-timescale updates converge (Heusel et al, 2017)
 - Their recommendation: use a different learning rate for G and D
 - My recommendation: decay your learning rate for G
- Convergence is very inefficient (Mescheder et al, 2017)

(Goodfellow 2017)

Building a bridge from simple to complex theoretical models

generator function space Parameterized GANS Finite sized GANs Limited precision GANS

Does a Nash equilibrium exist, in the right place?

- PDF space: yes
- Generator function space: yes, but there can also be bad equilibria
- What about for neural nets with a finite number of finiteprecision parameters?
 - Arora et al, 2017: yes... for mixtures
 - Infinite mixture

• Approximate an infinite mixture with a finite mixture

Open Challenges

- Design an algorithm that avoids bad equilibria in generator function space OR reparameterize the problem so that it does not have bad equilibria
- Design an algorithm that converges *rapidly* to the equilibrium
- Study the *global* convergence properties of the existing algorithms

