MedGAN Progressive GAN CoGAN b-GAN LS-GAN AffGAN LAPGAN LSGAN InfoGAN CatGAN McGAN MGAN FF-GAN C-VAE-GAN MAGAN 3D-GAN DualGAN GAWWN **Bayesian GAN** SN-GAN EBGAN ALI MARTA-GAN f-GAN Art ArtGAN

LR-GAN CGAN IcGAN DiscoGANMPM-GAN AdaGAN AMGAN iGAN GANs for Limited Labeled Data Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN NIPS 2017 Workshop on Limited Labeled Data: Weak Supervision and Beyond **BS-GAN** Long Beach, 2017-12-09 GoGAN DR-GAN AC-GAN DCGAN BiGAN CycleGAN GP-GAN

AnoGAN DTN MAD-GAN AL-CGAN MalGAN BEGAN

(Goodfellow et al., 2014)

- Missing data
 - Semi-supervised learning
- Set-member supervision
- Unsupervised correspondence learning
- Replace data collection with simulation
- Simulated environments and training data
- Domain adaptation

What is in this image?

(Yeh et al., 2016)

Generative modeling reveals a face

(Yeh et al., 2016)

- Missing data
 - Semi-supervised learning
- Set-member supervision
- Unsupervised correspondence learning
- Replace data collection with simulation
- Simulated environments and training data
- Domain adaptation

(Odena 2016, Salimans et al 2016)

Supervised Discriminator

Semi-Supervised Classification

- MNIST: 100 training labels -> 80 test mistakes SVHN: 1,000 training labels -> 4.3% test error CIFAR-10: 4,000 labels -> 14.4% test error (Dai et al 2017)
- Useful for differential privacy: Papernot et al, 2016

- Missing data
 - Semi-supervised learning
- Set-member supervision
- Unsupervised correspondence learning
- Replace data collection with simulation
- Simulated environments and training data
- Domain adaptation

Next Video Frame Prediction

What happens next?

(Lotter et al 2016)

Ground Truth

Next Video Frame Prediction

(Lotter et al 2016)

Next Video Frame(s) Prediction Mean Absolute Error

Mean Squared Error

(Mathieu et al. 2015)

- Missing data
 - Semi-supervised learning
- Set-member supervision
- Unsupervised correspondence learning
- Replace data collection with simulation
- Simulated environments and training data
- Domain adaptation

Unsupervised Image-to-Image Translation

Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)

Translation without parallel

corpora

(Conneau et al., 2017)

- Missing data
 - Semi-supervised learning
- Set-member supervision
- Unsupervised correspondence learning
- Replace data collection with simulation
- Simulated environments and training data
- Domain adaptation

Simulating particle physics

Save millions of dollars of CPU time by predicting outcomes of explicit simulations

- Missing data
 - Semi-supervised learning
- Set-member supervision
- Unsupervised correspondence learning
- Replace data collection with simulation
- Simulated environments and training data
- Domain adaptation

ΑΙ

OBSESSIONS

Q

GANs for simulated training data Unlabeled Real Images

Synthetic

Refined

(Shrivastava et al., 2016)

Autonomous Driving Data

Input labels

Synthesized image

(Wang et al., 2017)

- Missing data
 - Semi-supervised learning
- Set-member supervision
- Unsupervised correspondence learning
- Replace data collection with simulation
- Simulated environments and training data
- Domain adaptation

• Domain Adversarial Networks (Ganin et al, 2015)

VIPER

• Professor forcing (Lamb et al, 2016): Domain-Adversarial learning in RNN hidden state

Domain Adaptation

PRID

CUHK

GANs for domain adaptation

(Bousmalis et al., 2016)

Questions

