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Adversarial Nets Framework
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Overcoming limited data with 
GANs

• Missing data 

• Semi-supervised learning 

• Set-member supervision 

• Unsupervised correspondence learning 

• Replace data collection with simulation 

• Simulated environments and training data 

• Domain adaptation



(Goodfellow 2017)

What is in this image?

(Yeh et al., 2016)
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Generative modeling reveals a face

(Yeh et al., 2016)
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Supervised Discriminator
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Semi-Supervised Classification 

MNIST: 100 training labels -> 80 test mistakes
SVHN: 1,000 training labels -> 4.3% test error 

CIFAR-10: 4,000 labels -> 14.4% test error
(Dai et al 2017)

Useful for differential privacy: Papernot et al, 2016
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Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)

would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can

545

(Lotter et al 2016)

What happens next?
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Next Video Frame Prediction

(Lotter et al 2016)
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Next Video Frame(s) 
Prediction

(Mathieu et al. 2015)

Mean Squared Error Mean Absolute Error Adversarial

https://arxiv.org/find/cs/1/au:+Mathieu_M/0/1/0/all/0/1
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Unsupervised Image-to-Image Translation

(Liu et al., 2017)

Day to night
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CycleGAN

(Zhu et al., 2017)
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Translation without parallel 
corpora

(Conneau et al., 2017)
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Simulating particle physics

(de Oliveira et al., 2017)

Save millions of 
dollars of CPU time 

by predicting 
outcomes of explicit 

simulations
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GANs for simulated training data

(Shrivastava et al., 2016)
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Autonomous Driving Data

(Wang et al., 2017)
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Domain Adaptation

• Domain Adversarial Networks (Ganin et al, 2015) 

• Professor forcing (Lamb et al, 2016): Domain-
Adversarial learning in RNN hidden state
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GANs for domain adaptation

(Bousmalis et al., 2016)
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Questions


