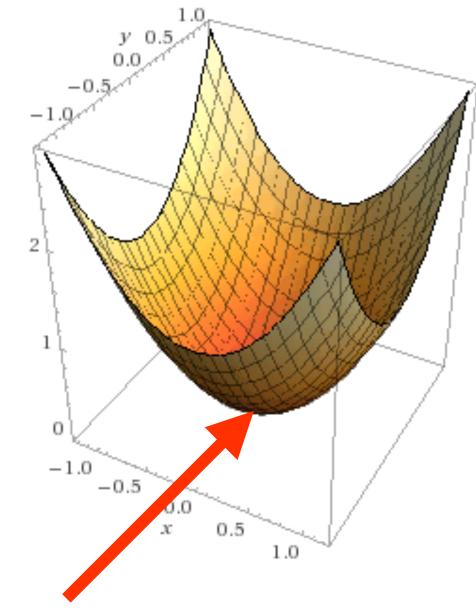
MedGAN Progressive GAN CoGAN LR-GAN CGAN IcGAN DiscoGAN_{MPM}-GAN AdaGAN BIM LS-GAN AffGAN LAPGAN FGSM LSGAN InfoGAN Adversarial Machine Learning Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN McGAN South Park Commons PDA FF-GAN MGAN **BS-GAN** San Francisco, 2018-05-24 DR-GAN C-VAE-GAN C-RNN-GAN MAGAN 3D-GAN Adversarial Training CycleGAN Gradient Masking Bayesian GAN SN-GAN EBGAN DTN MAD-GAN Context-RNN-GAN ALI BEGAN f-GAN ArtGAN PGD MalGAN

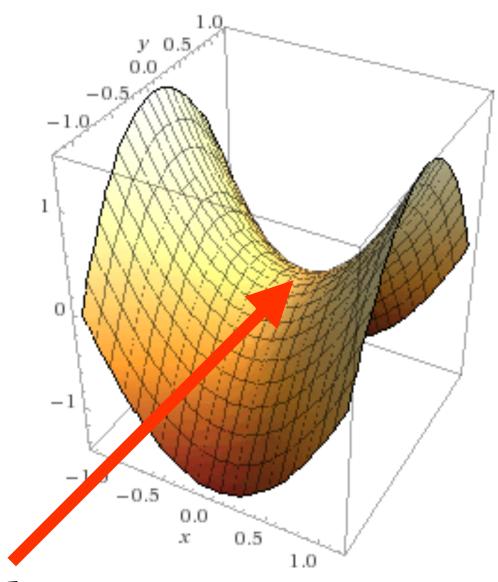
Adversarial Machine Learning

Traditional ML: optimization



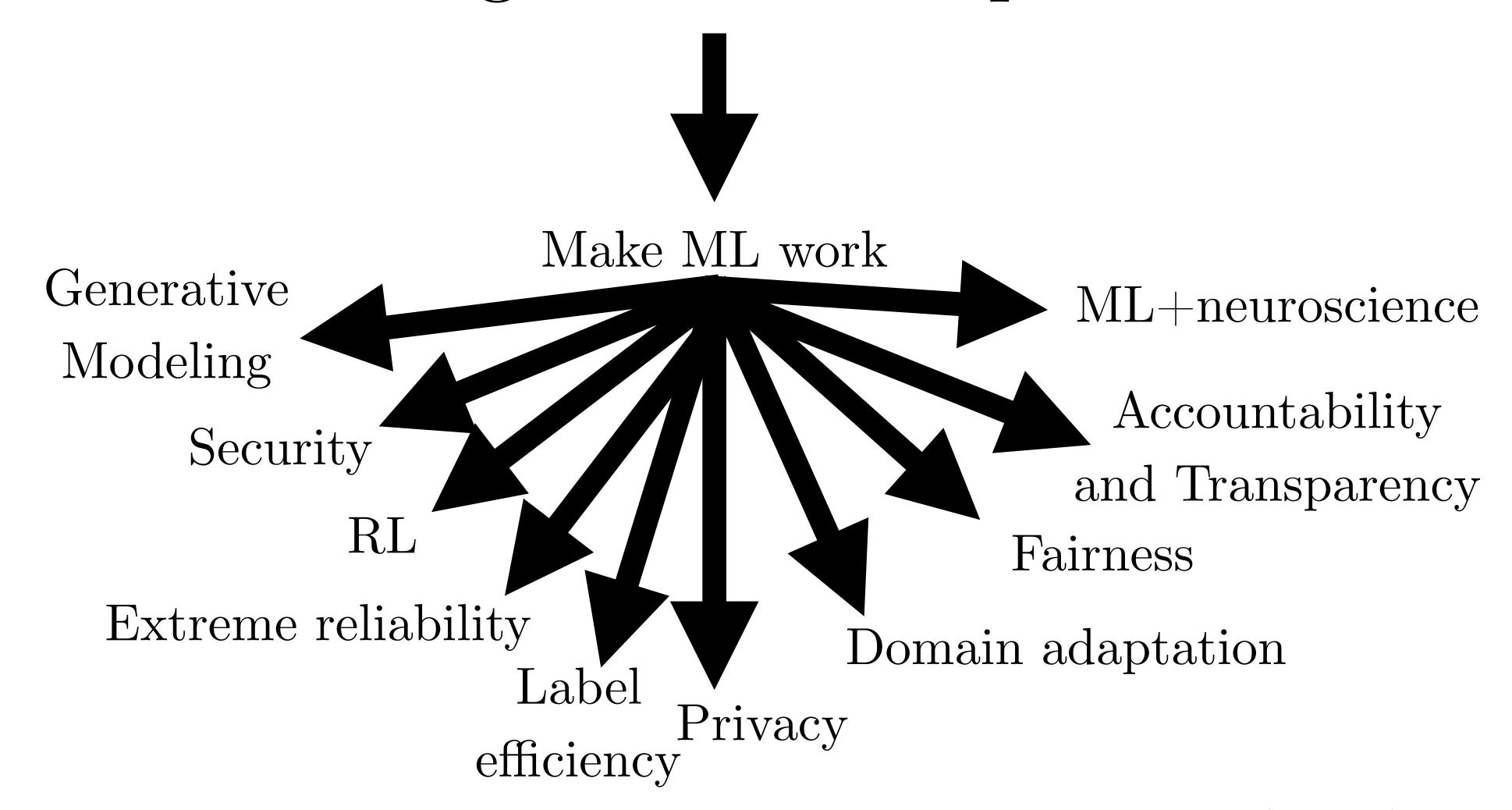
Minimum
One player,
one cost

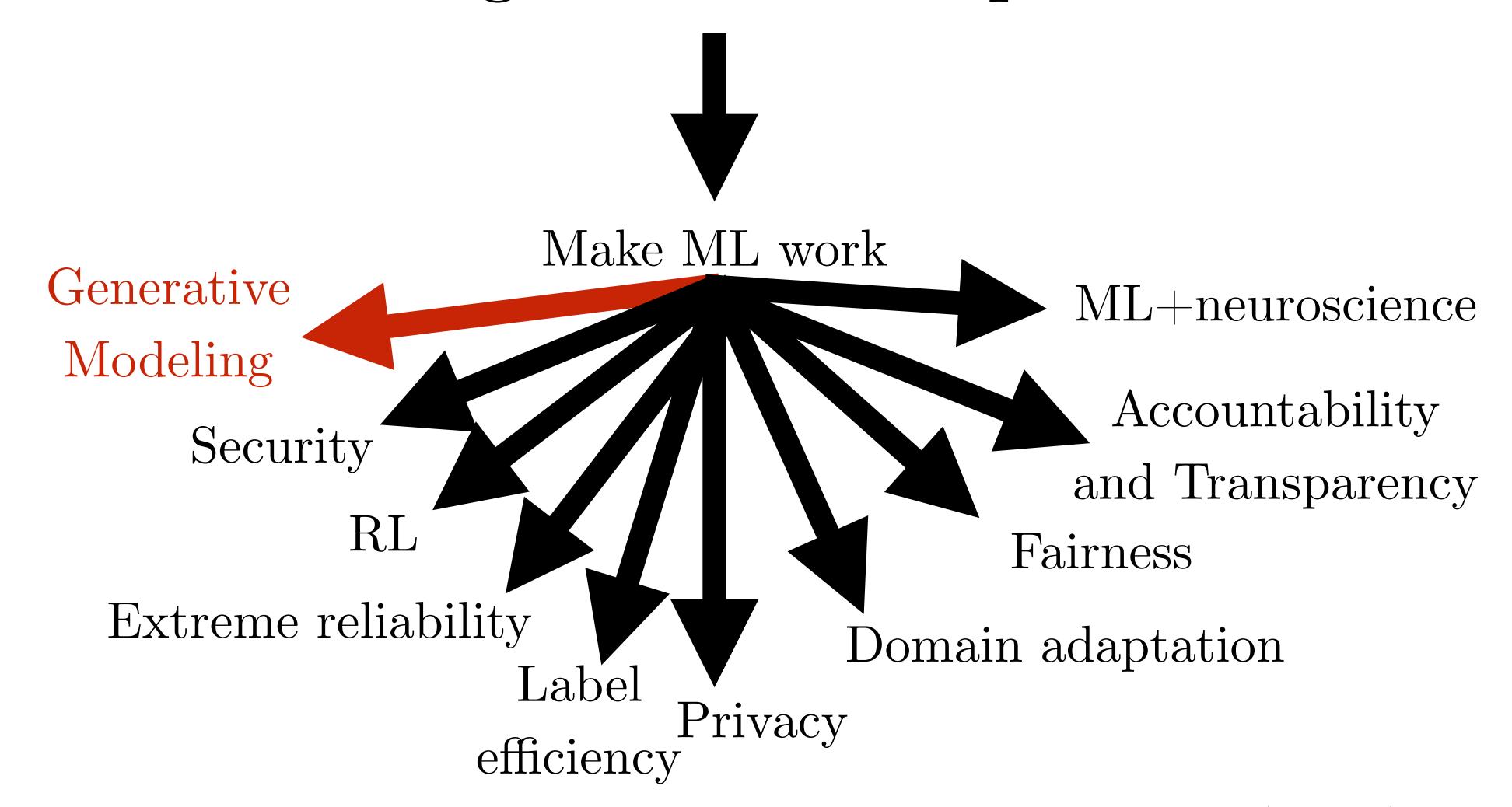
Adversarial ML: game theory



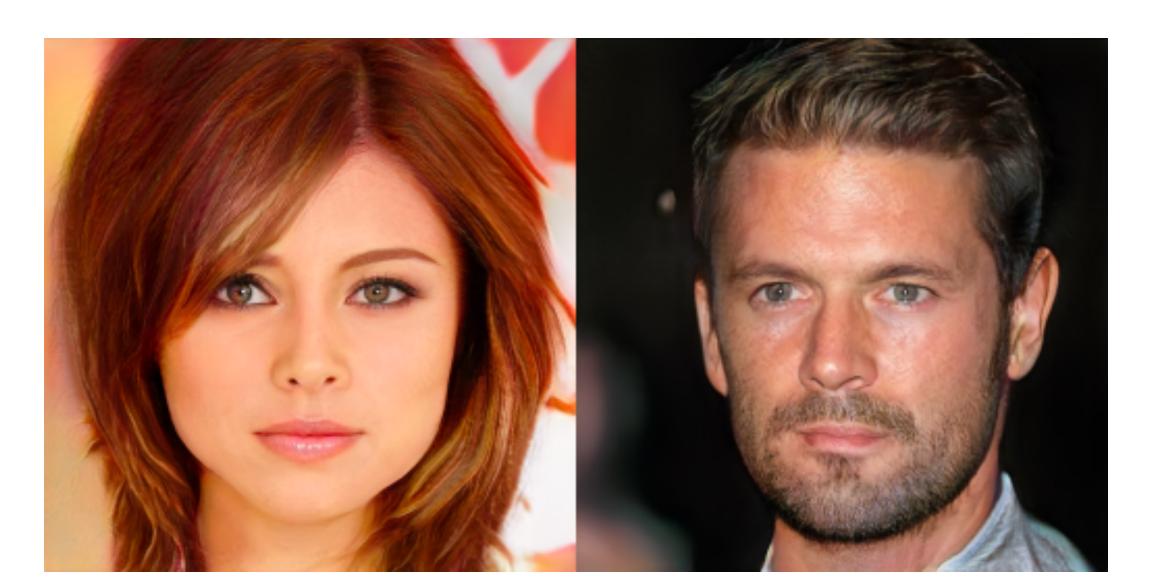
Equilibrium

More than one player, more than one cost



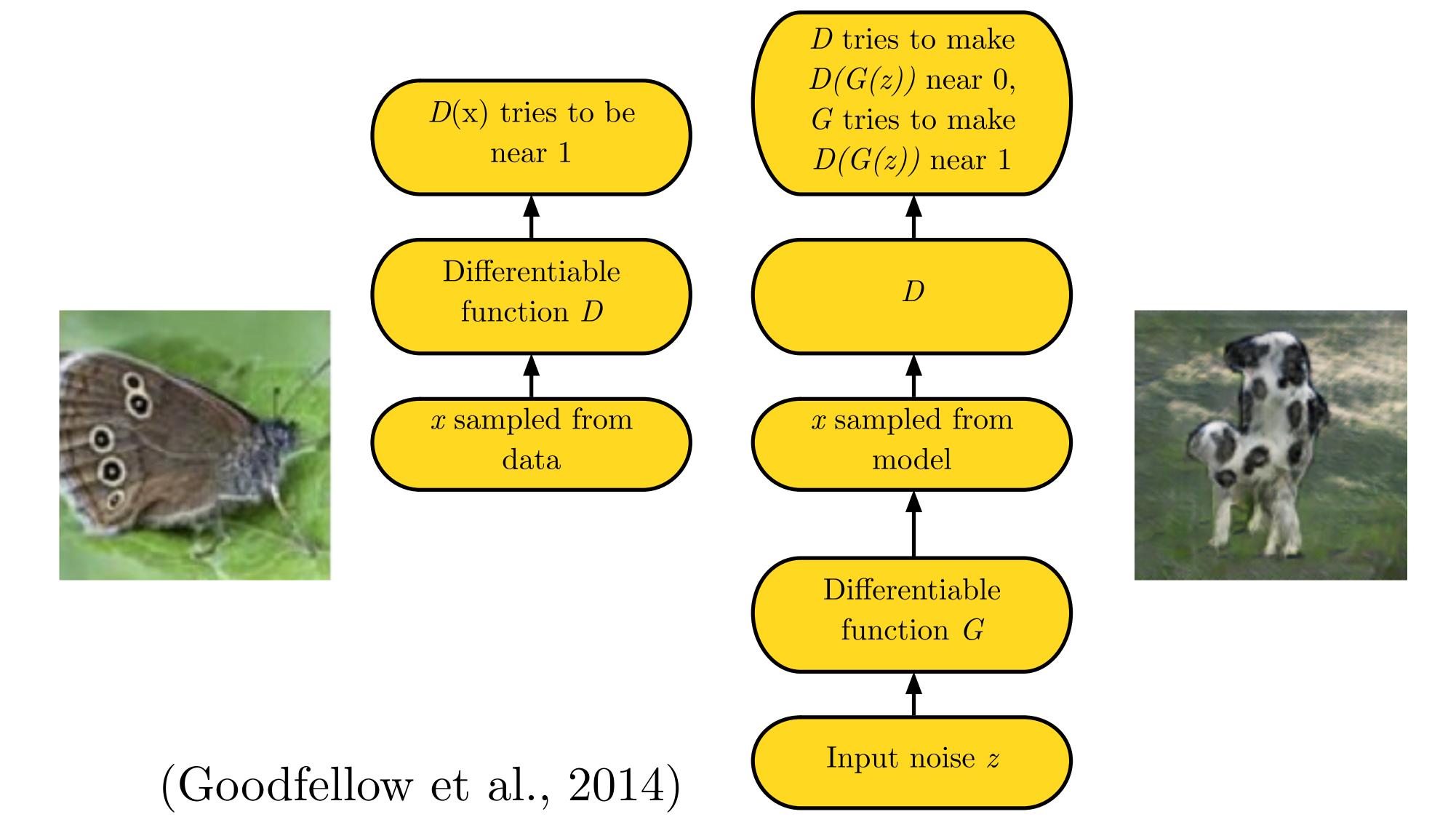


Generative Modeling: Sample Generation



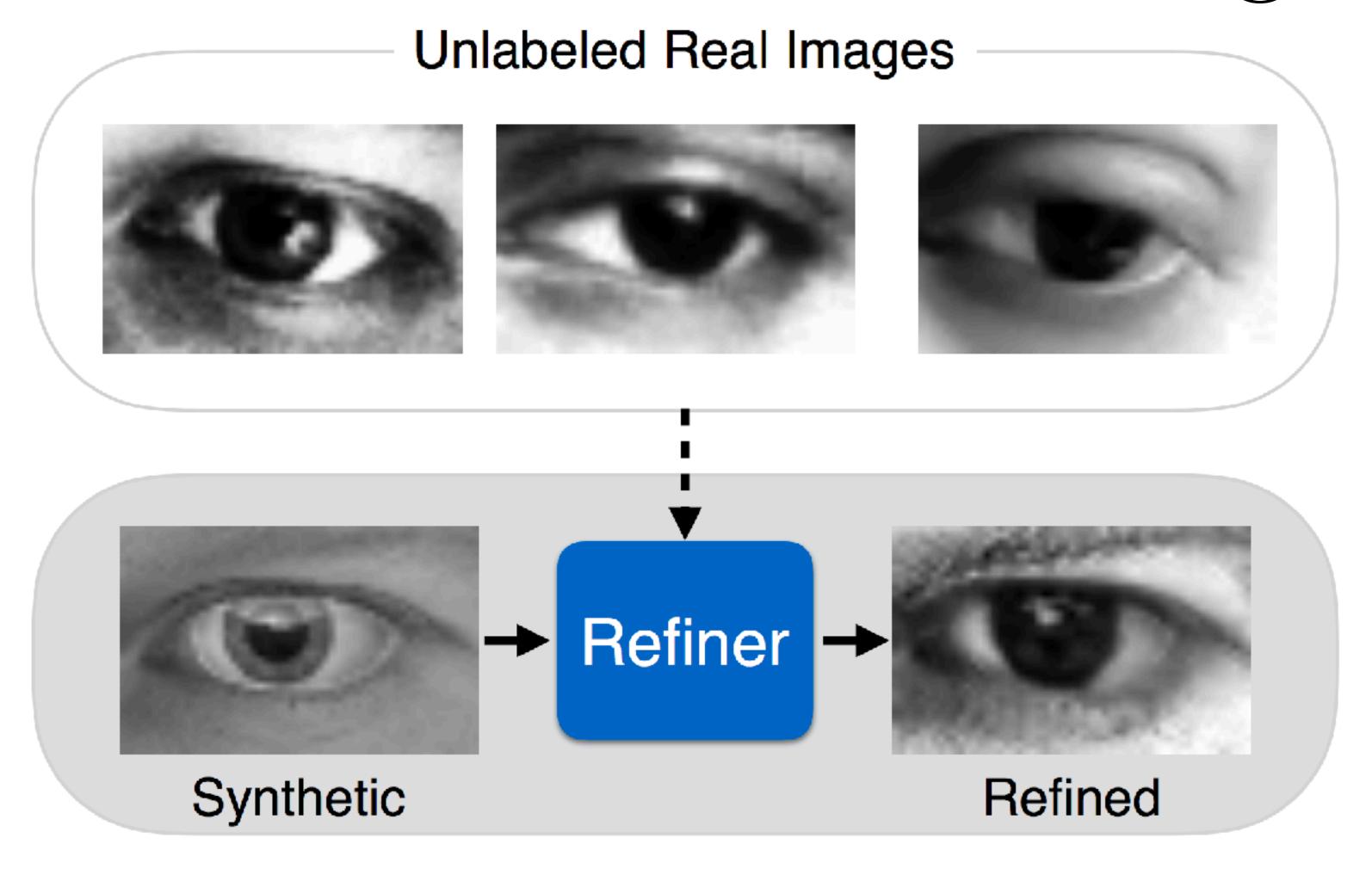
Sample Generator (Karras et al, 2017)

Adversarial Nets Framework



(Goodfellow 2018)

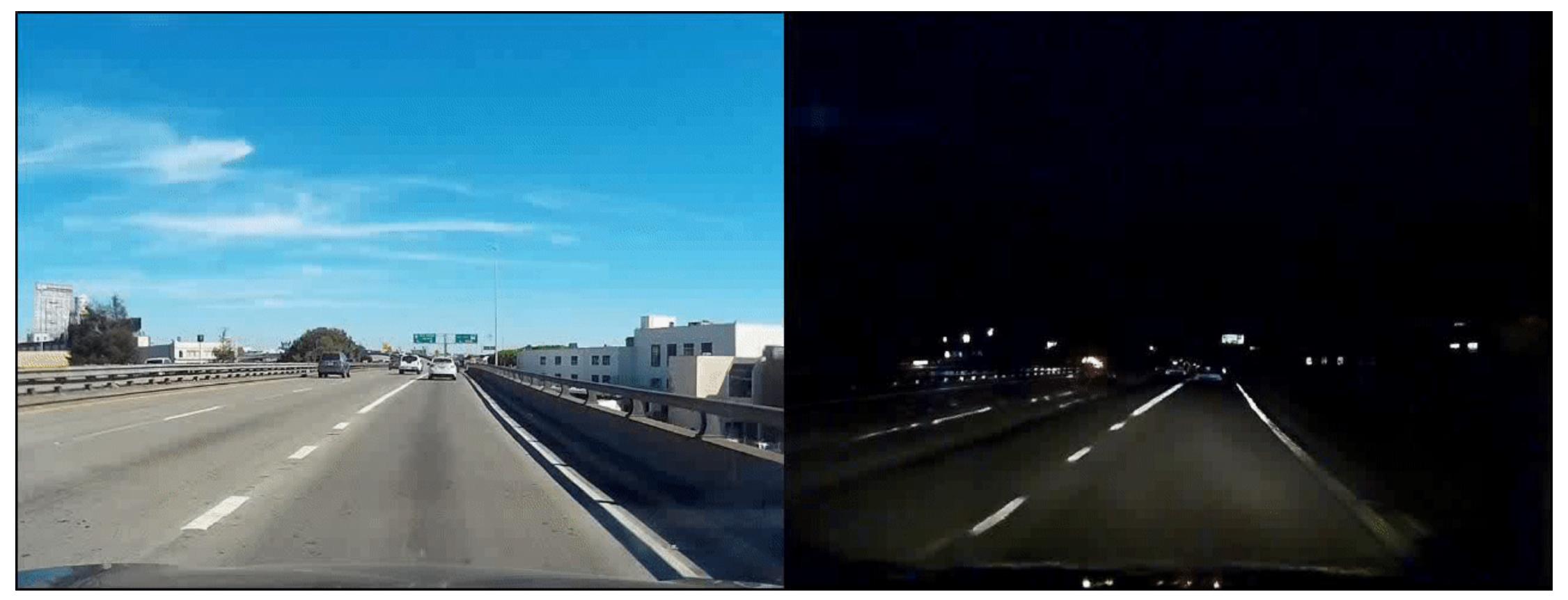
GANs for simulated training data



(Shrivastava et al., 2016)

Unsupervised Image-to-Image Translation

Day to night

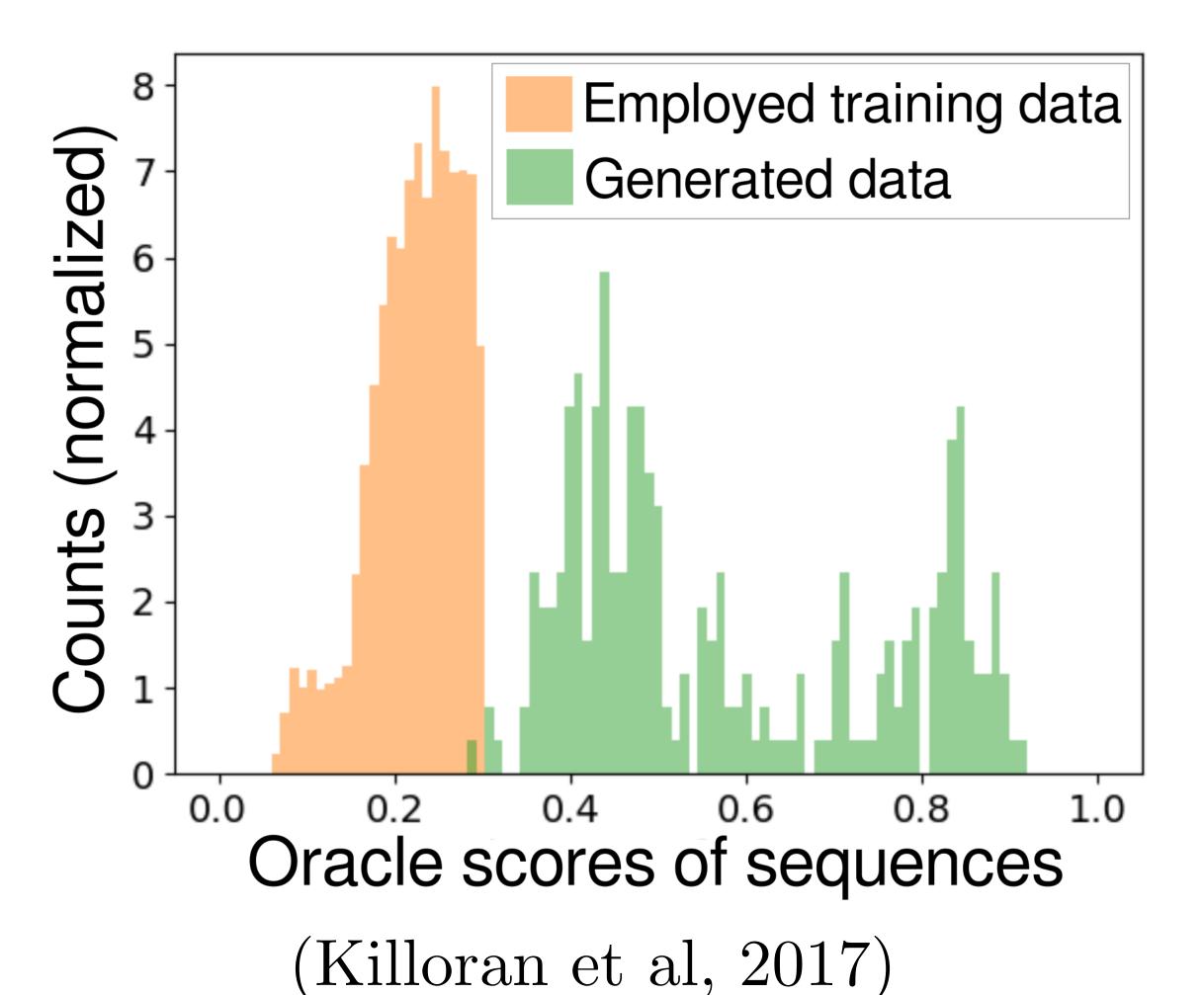


(Liu et al., 2017)

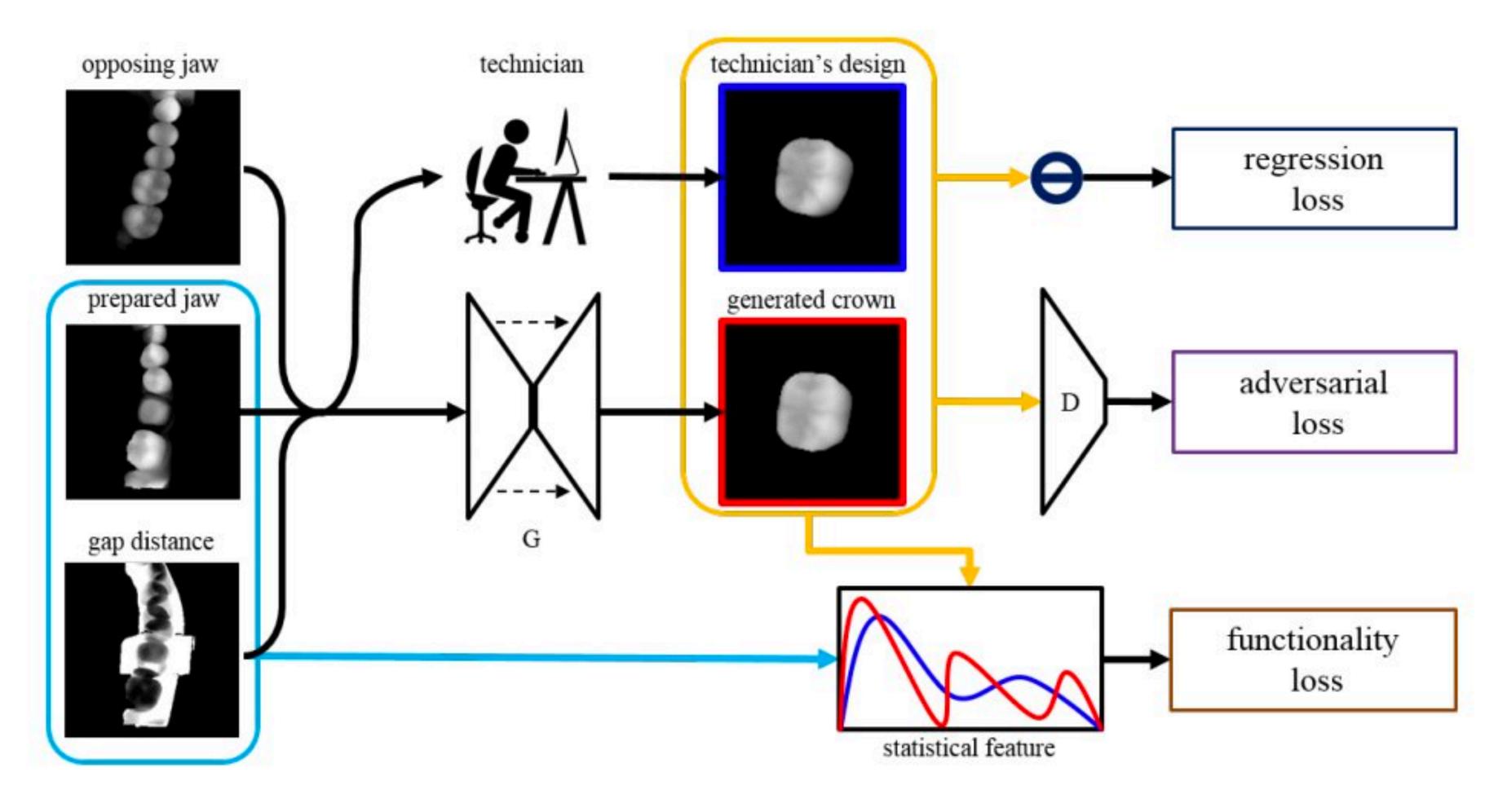
CycleGAN

(Zhu et al., 2017)

Designing DNA to optimize protein binding



Personalized GANufacturing



(Hwang et al 2018)

Self-Attention GAN

State of the art FID on ImageNet: 1000 categories, 128x128 pixels

Goldfish

Indigo Bunting

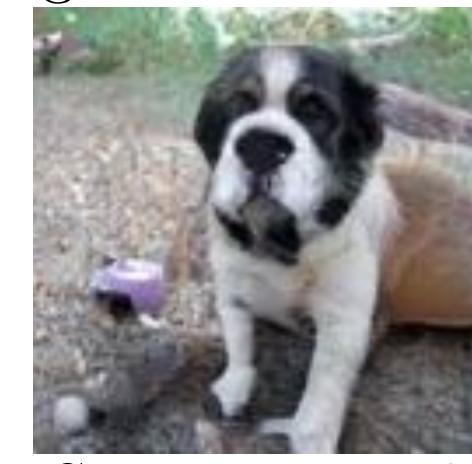
Redshank

Stone Wall

Broccoli

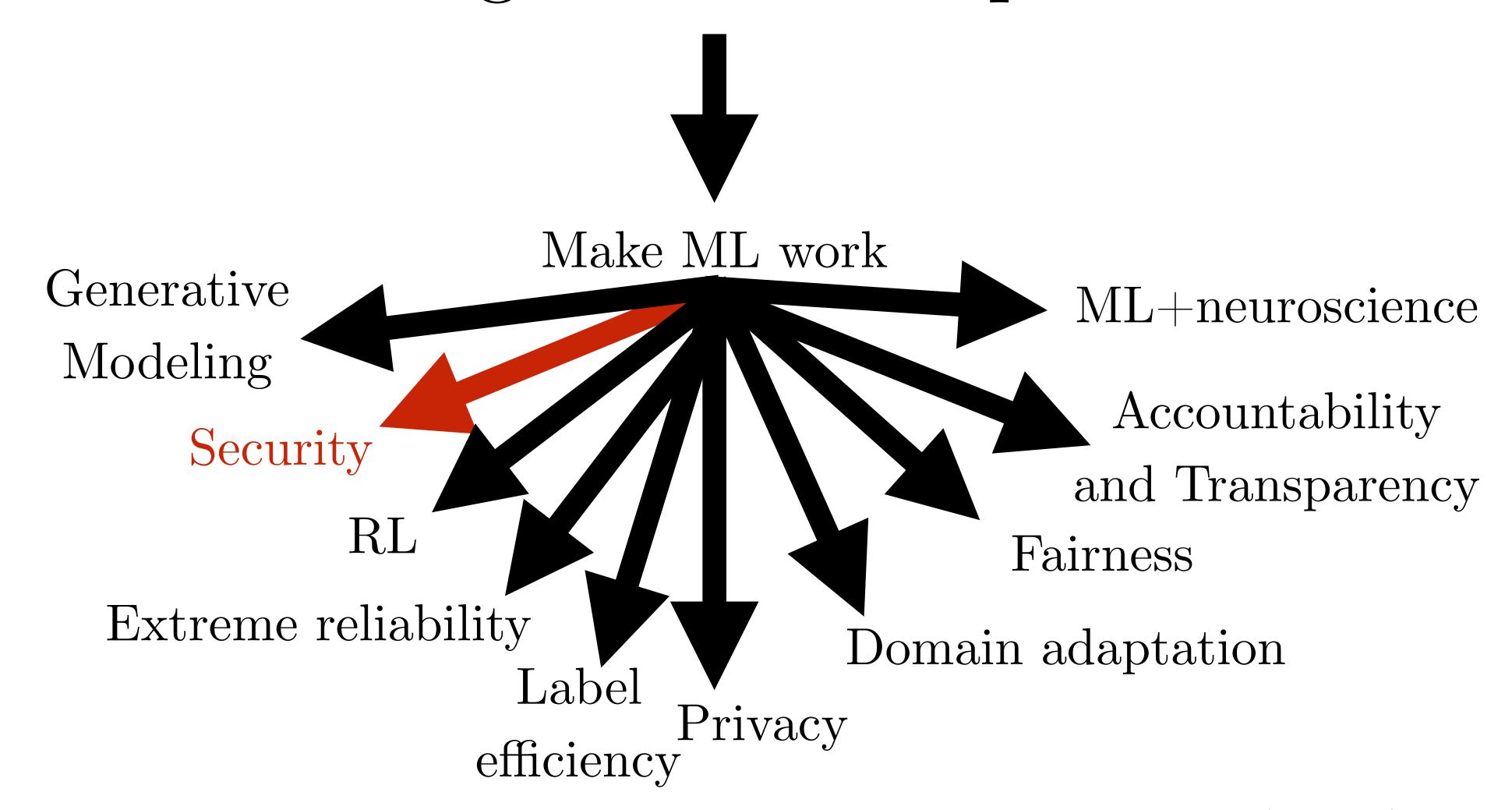
Tiger Cat

Geyser

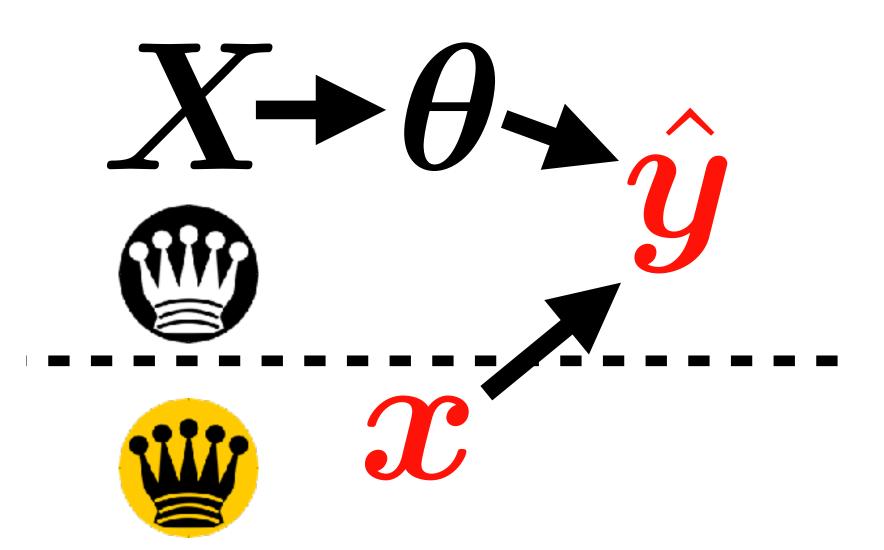


Saint Bernard

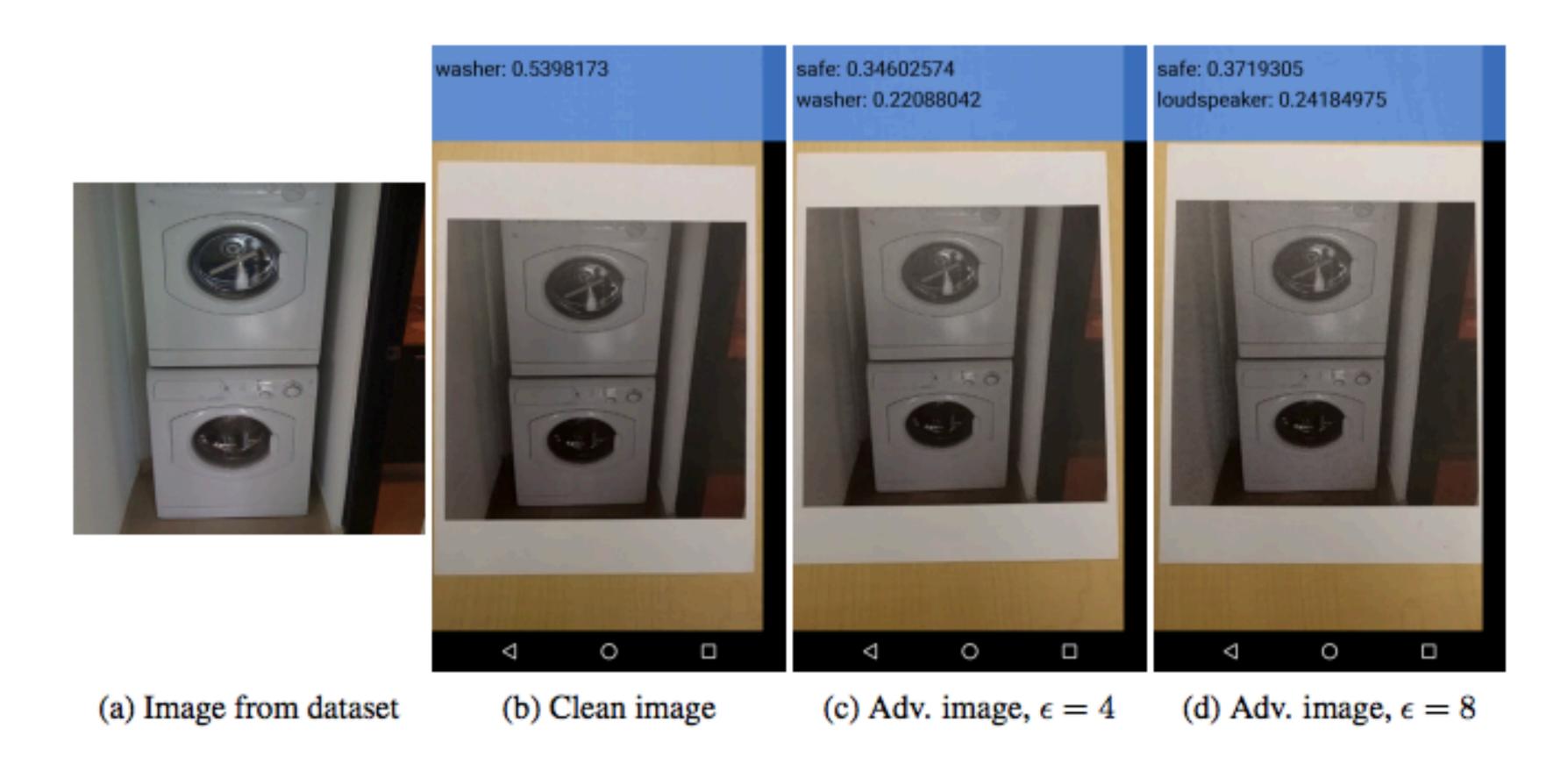
(Zhang et al, 2018)



Adversarial Examples

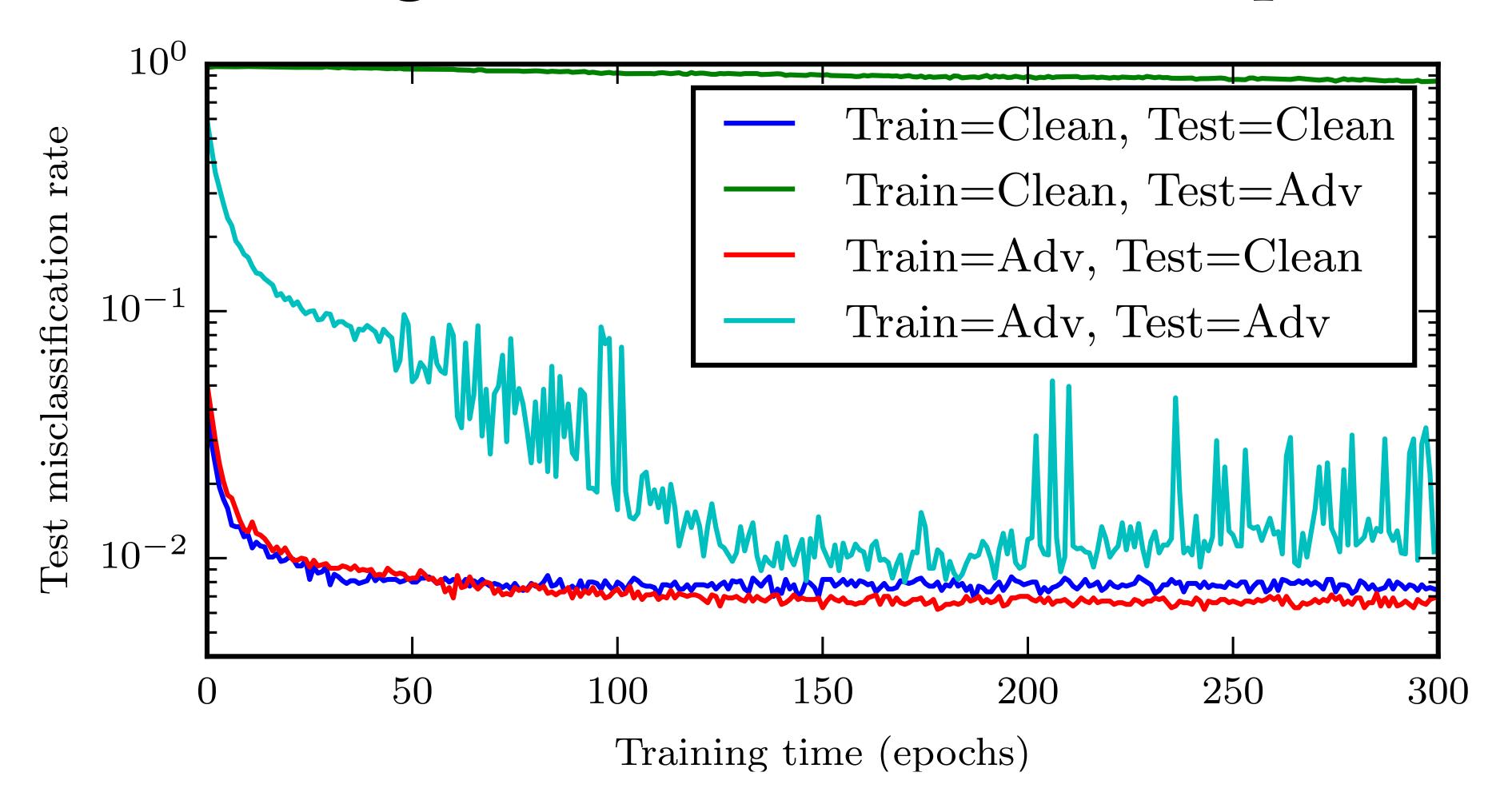


Adversarial Examples in the Physical World



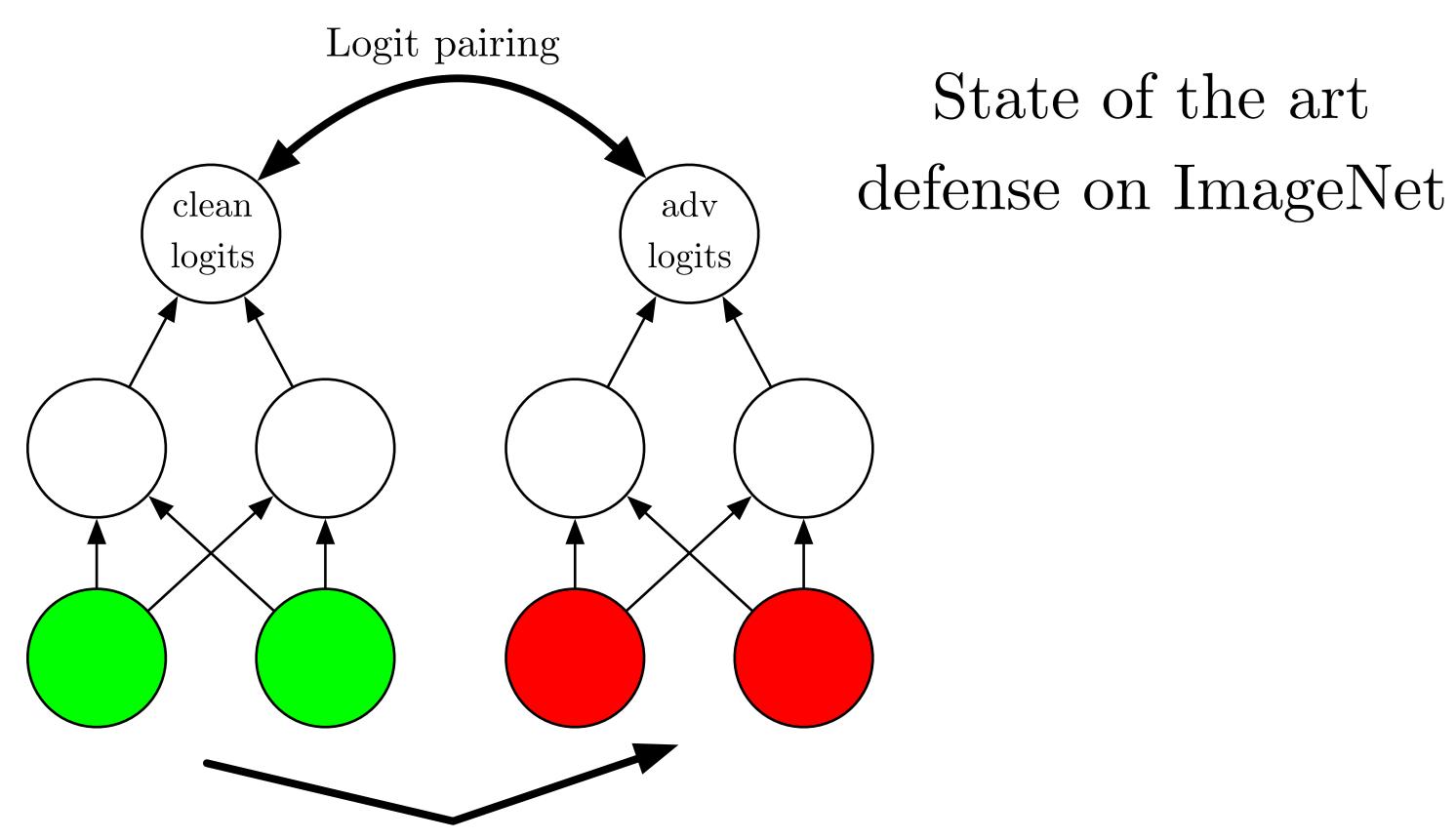
(Kurakin et al, 2016)

Training on Adversarial Examples



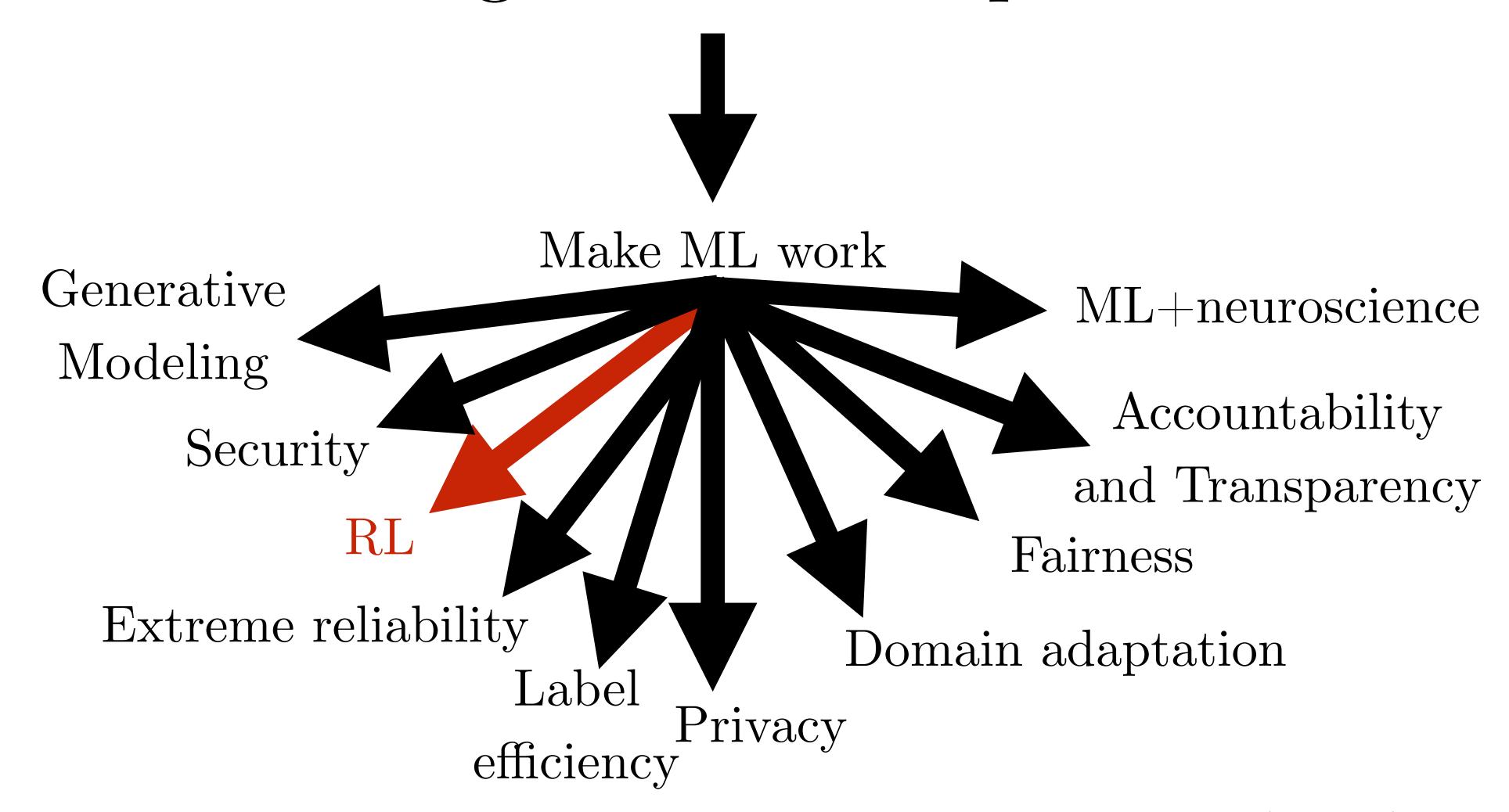
(CleverHans tutorial, using method of Goodfellow et al 2014)

Adversarial Logit Pairing

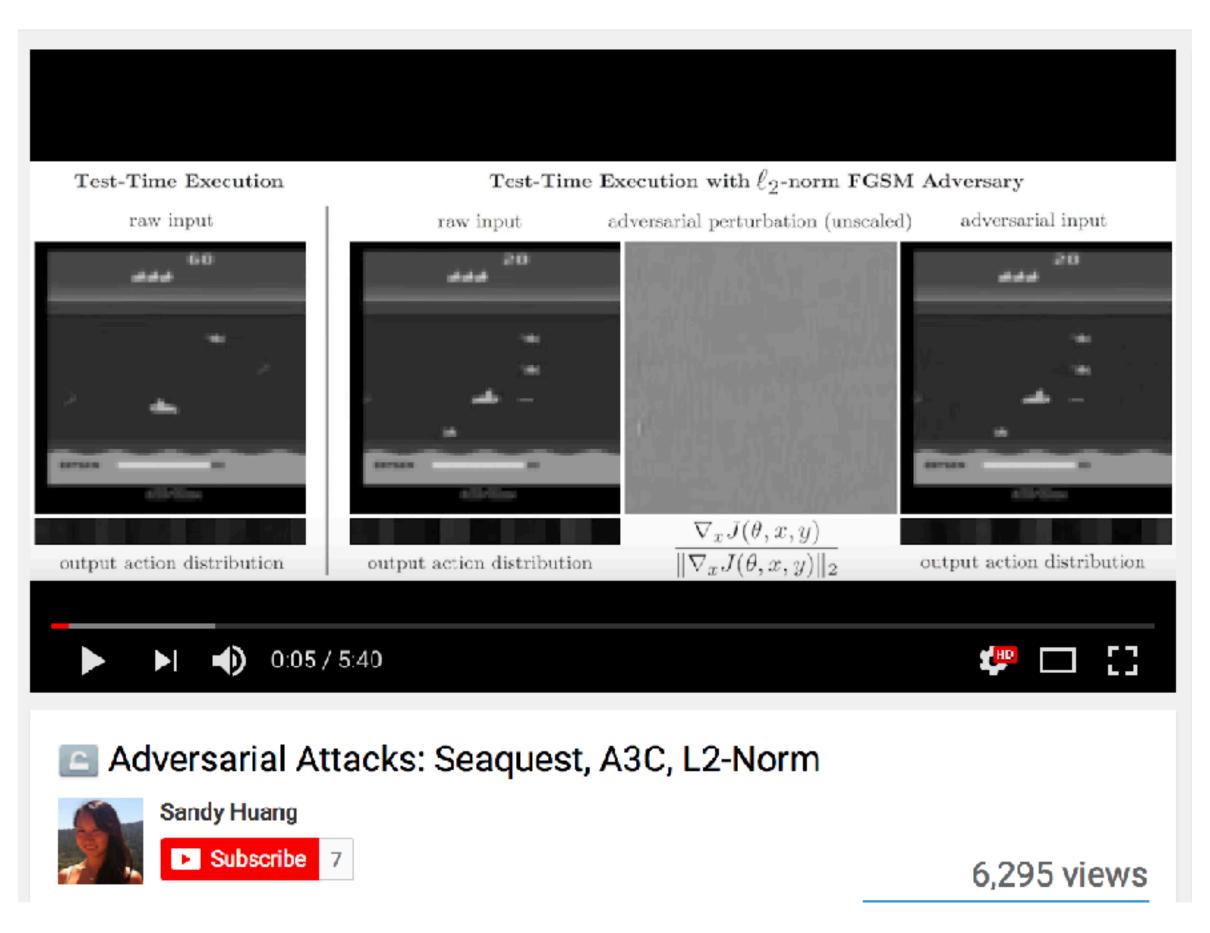


Adversarial perturbation

(Kannan et al, 2018)



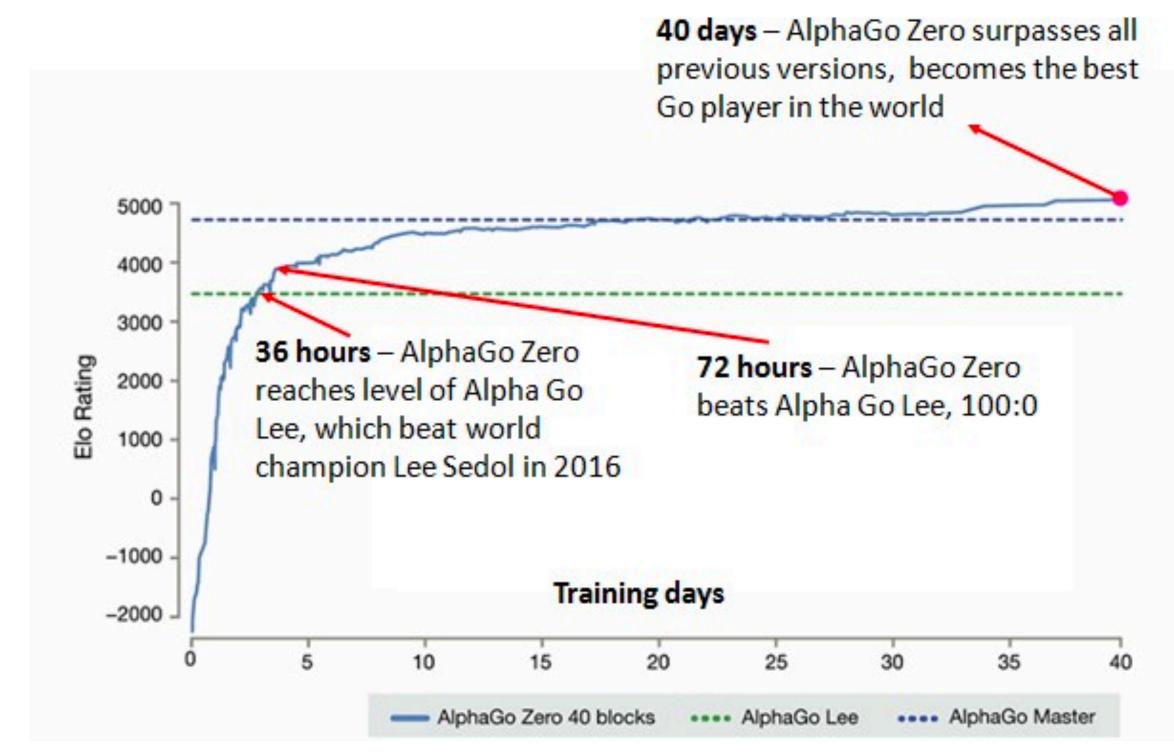
Adversarial Examples for RL



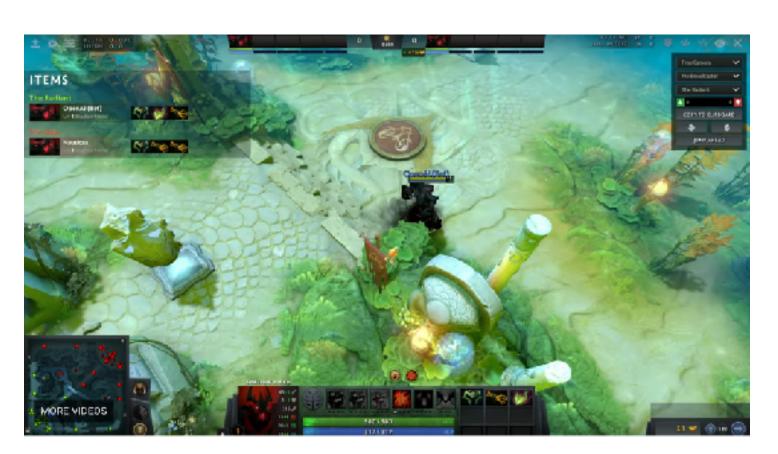
(<u>Huang et al.</u>, 2017)

Self-Play

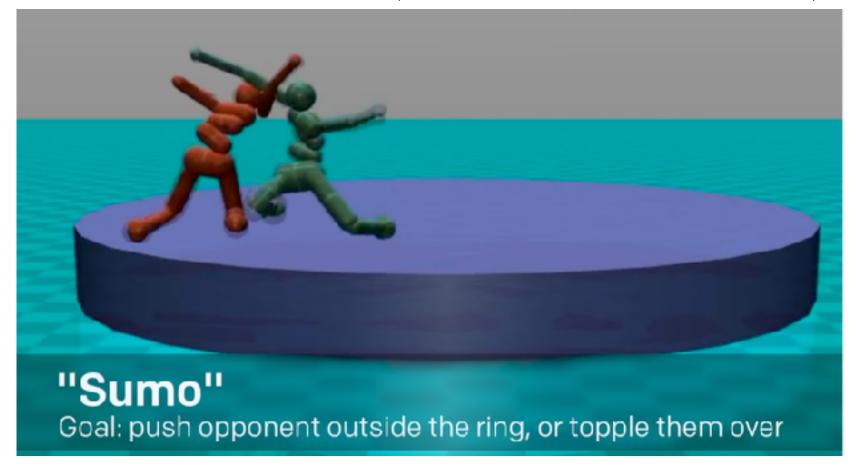
1959: Arthur Samuel's checkers agent



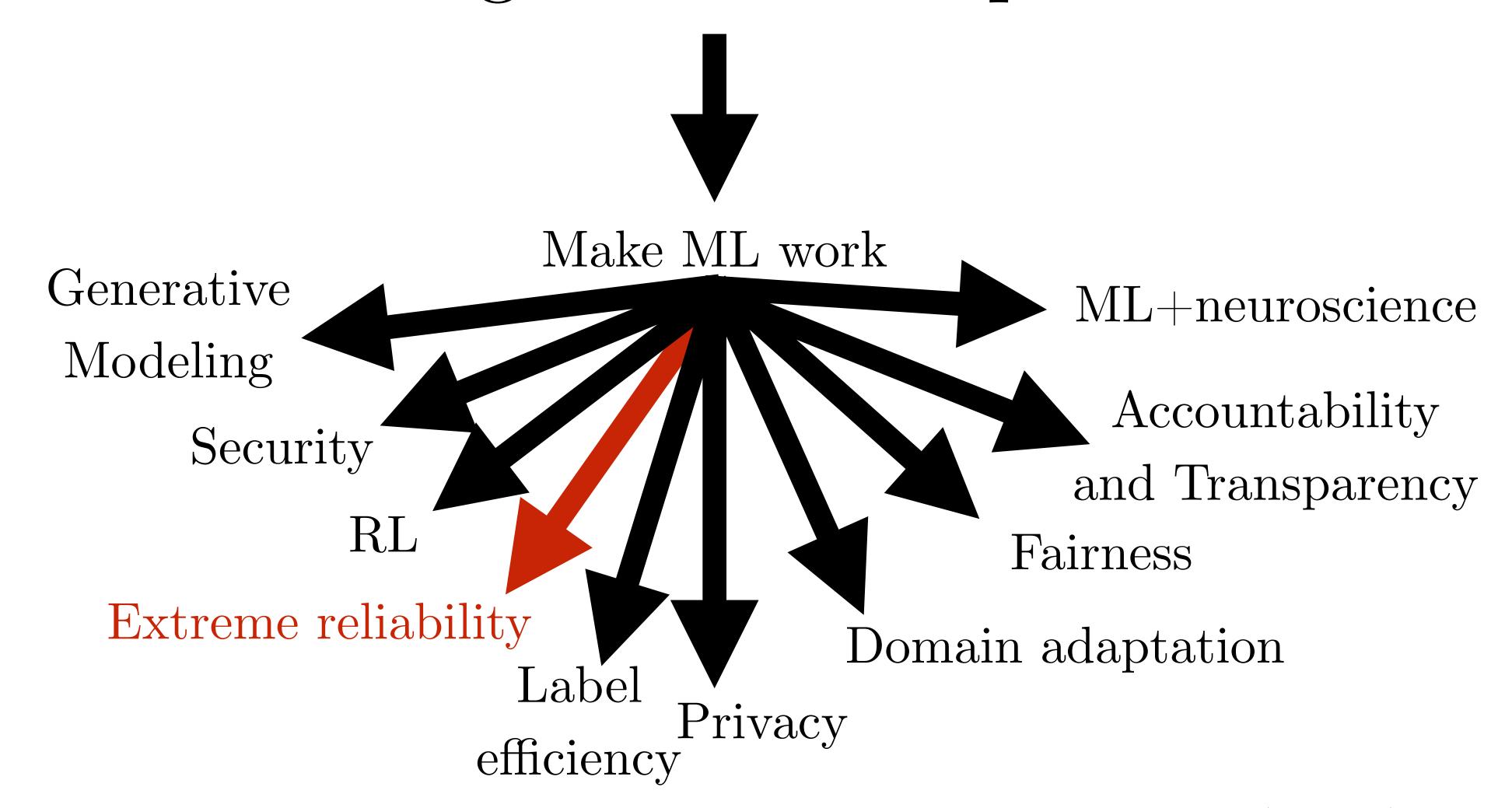
(Silver et al, 2017)



(OpenAI, 2017)

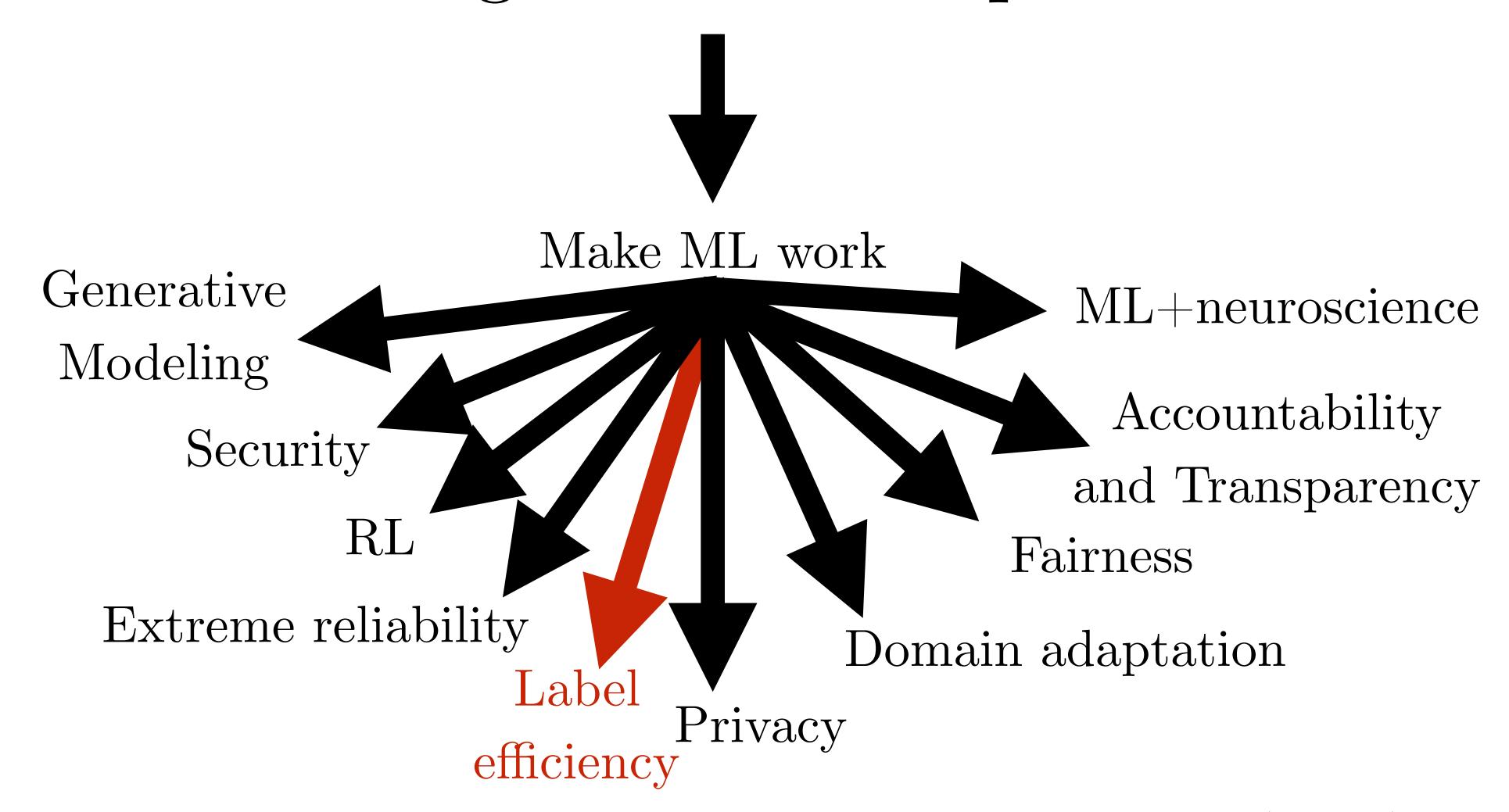


(Bansal et al, 2017)

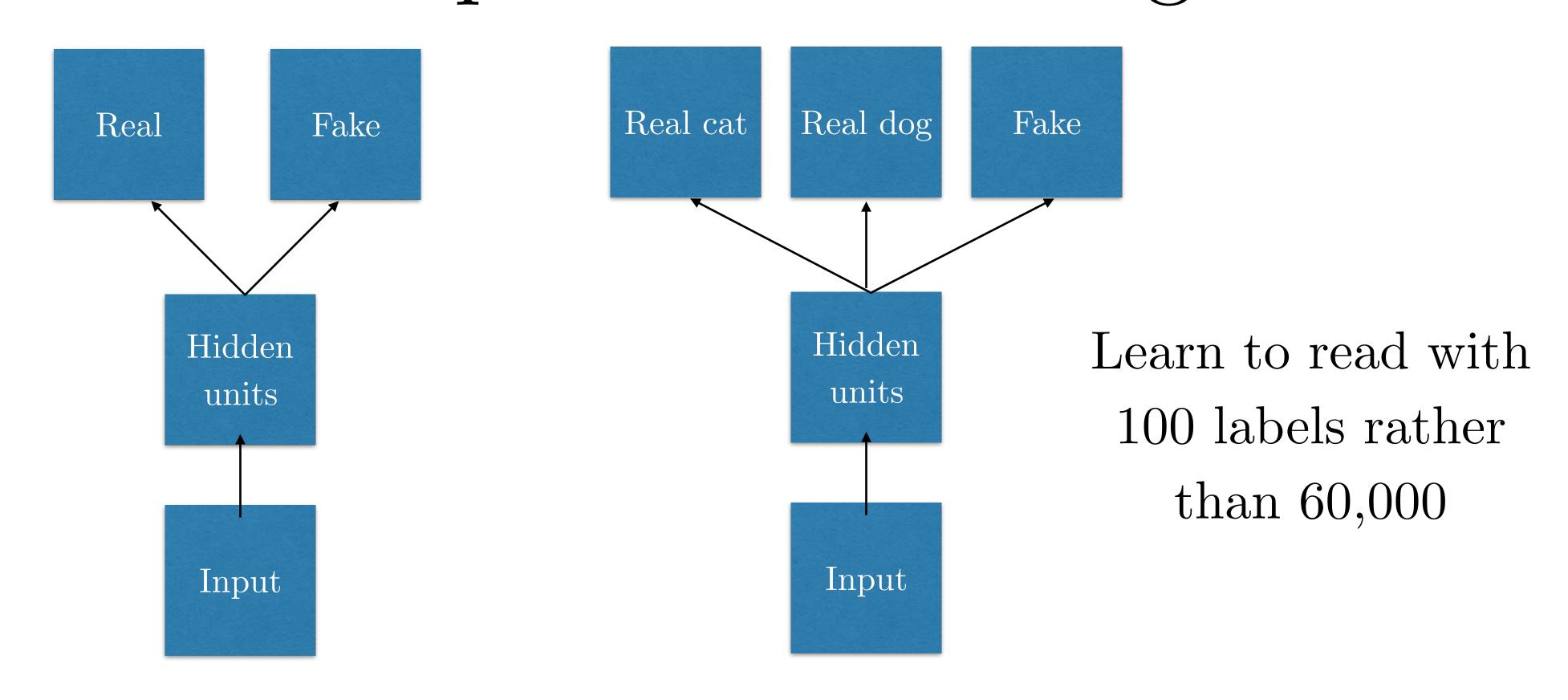


Extreme Reliability

- We want extreme reliability for
 - Autonomous vehicles
 - Air traffic control
 - Surgery robots
 - Medical diagnosis, etc.
- Adversarial machine learning research techniques can help with this
 - Katz et al 2017: verification system, applied to air traffic control



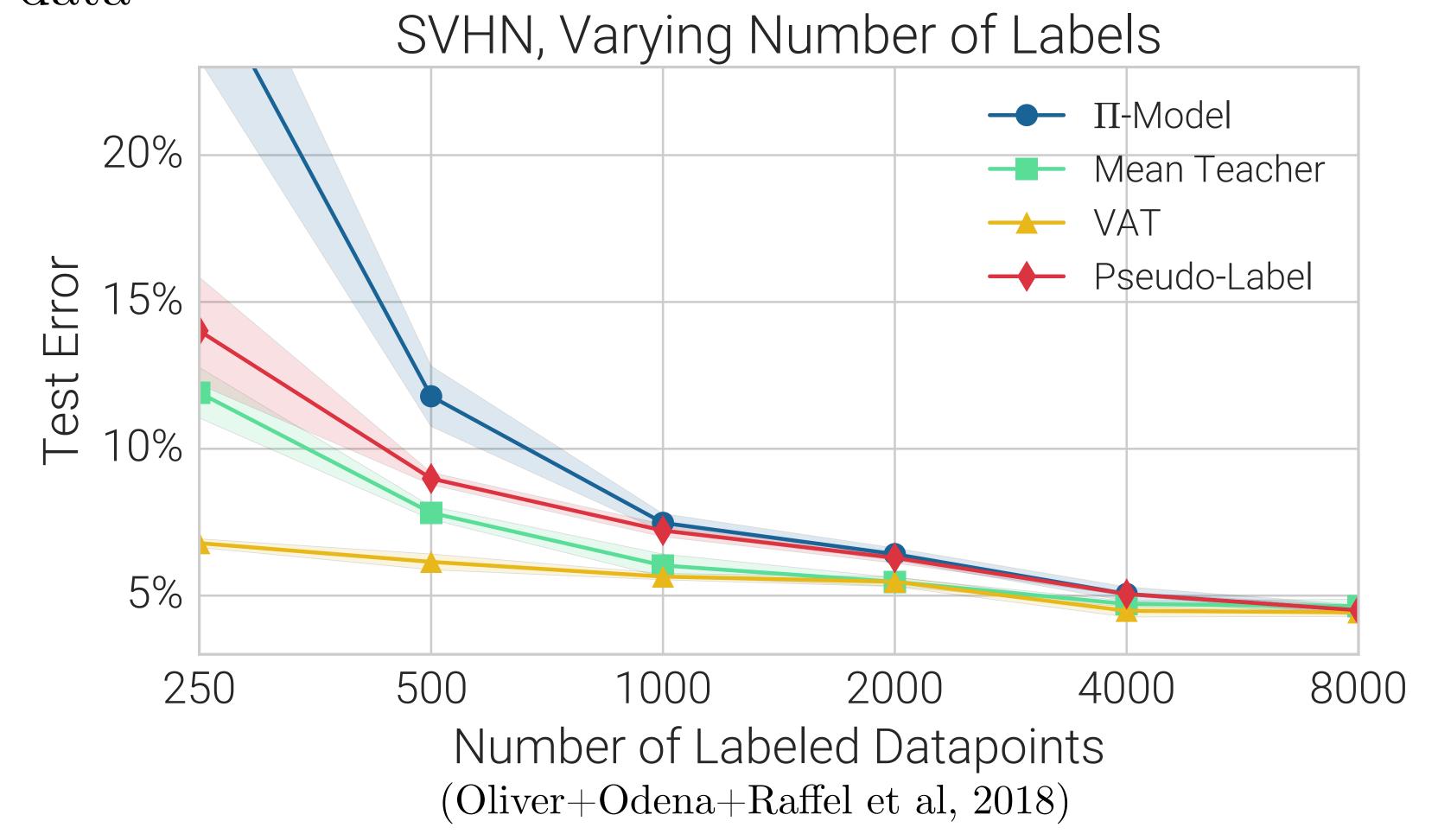
Supervised Discriminator for Semi-Supervised Learning

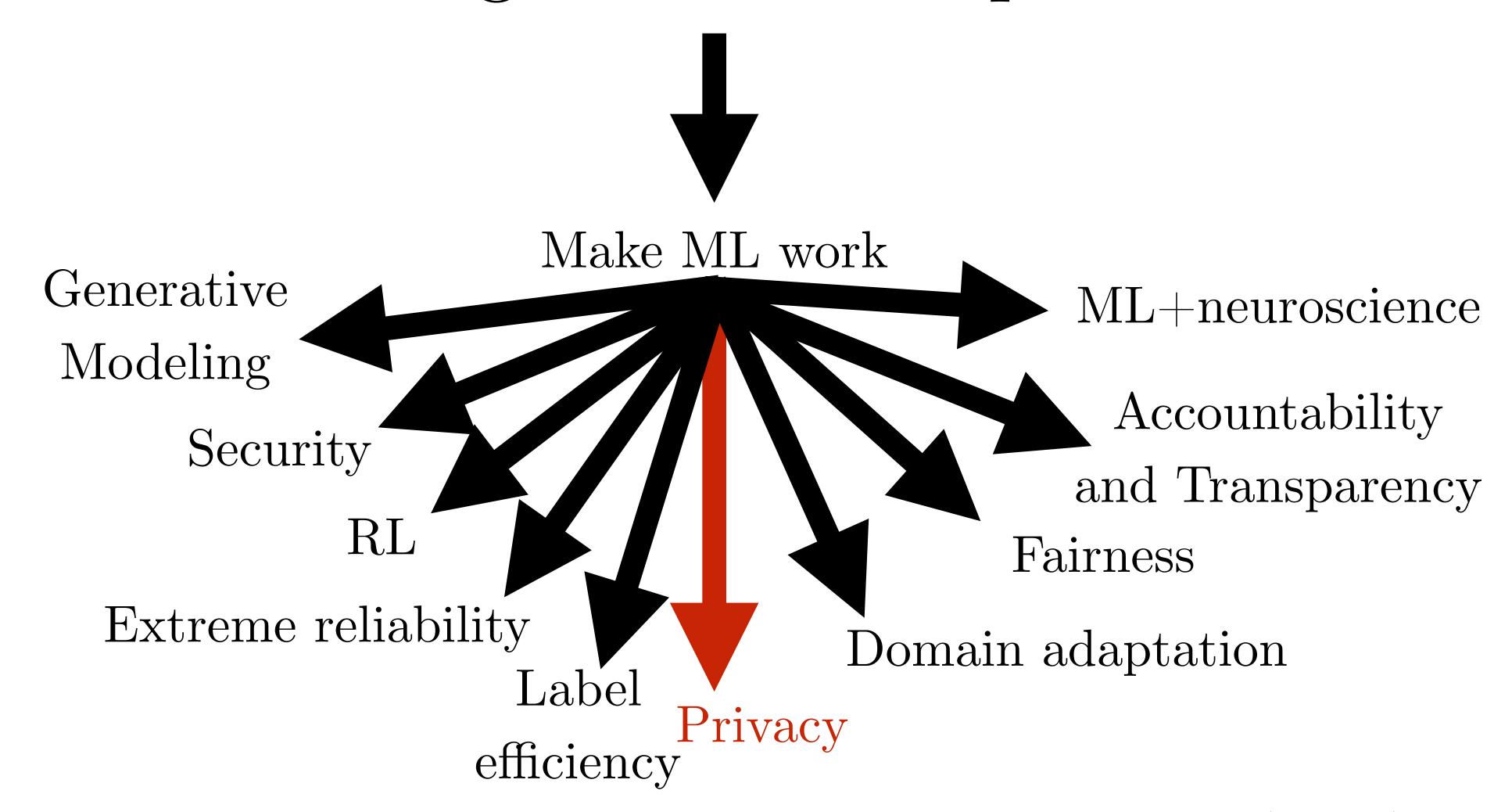


(Odena 2016, Salimans et al 2016)

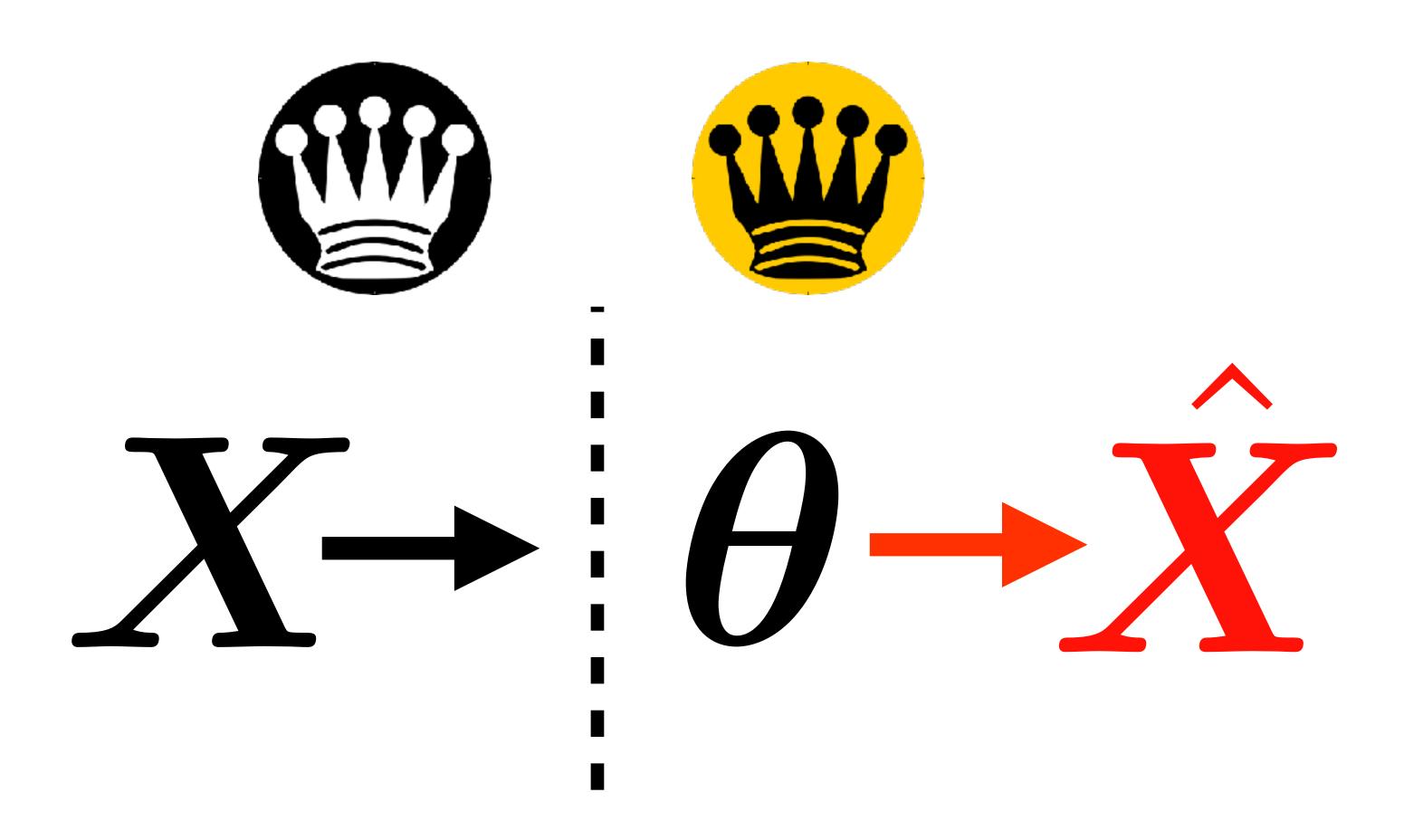
Virtual Adversarial Training

Miyato et al 2015: regularize for robustness to adversarial perturbations of unlabeled data

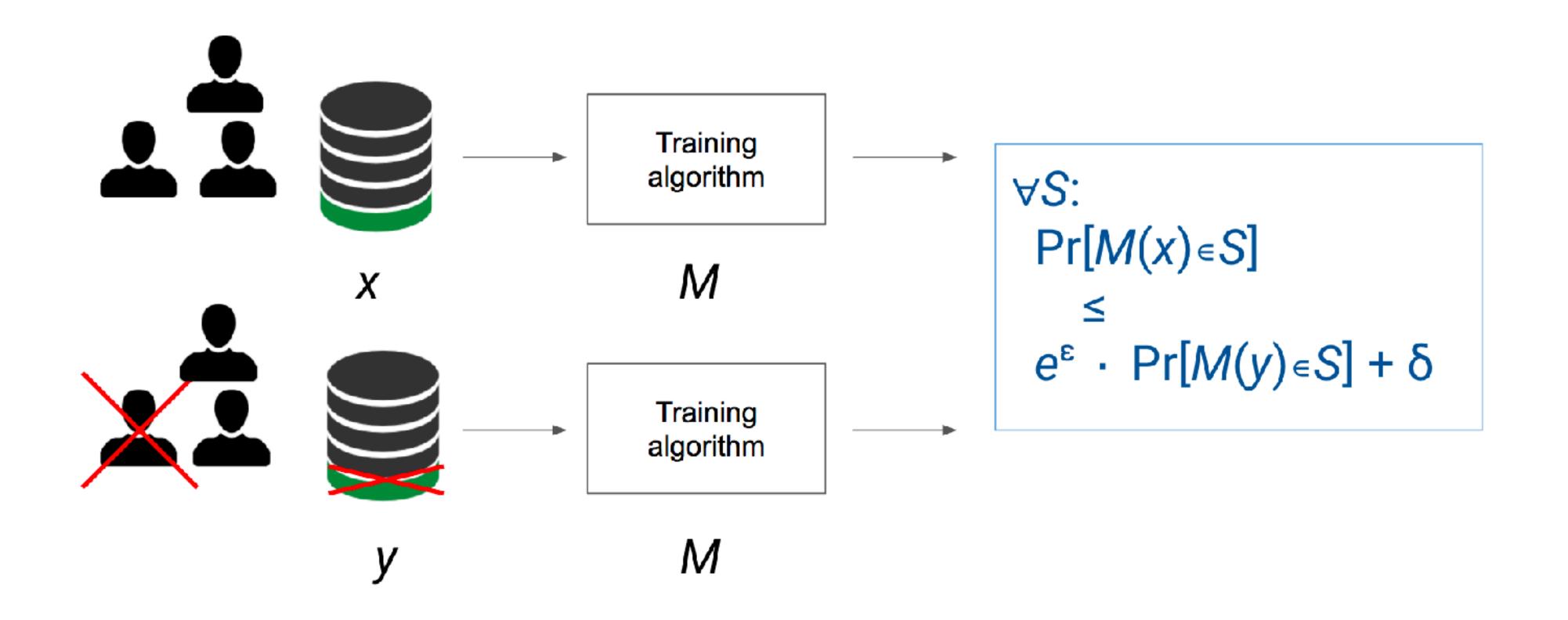




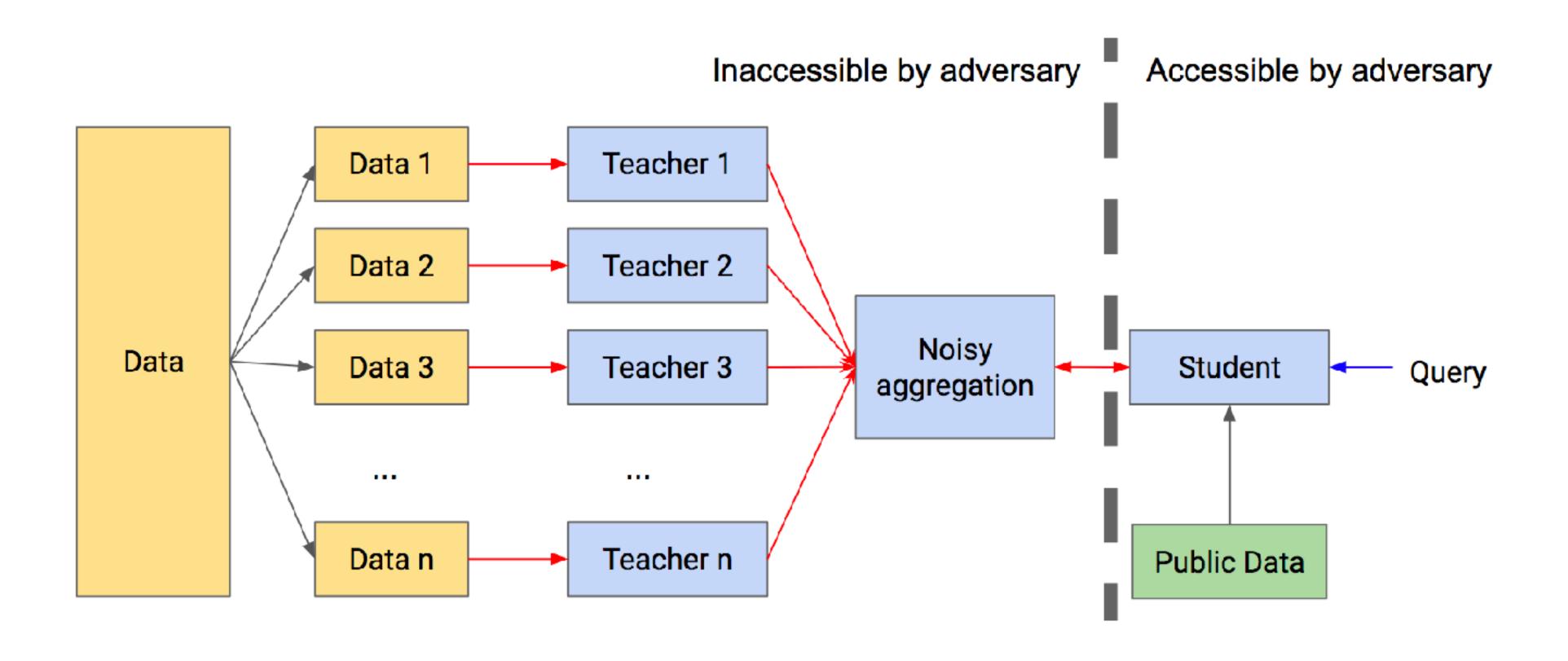
Privacy of training data



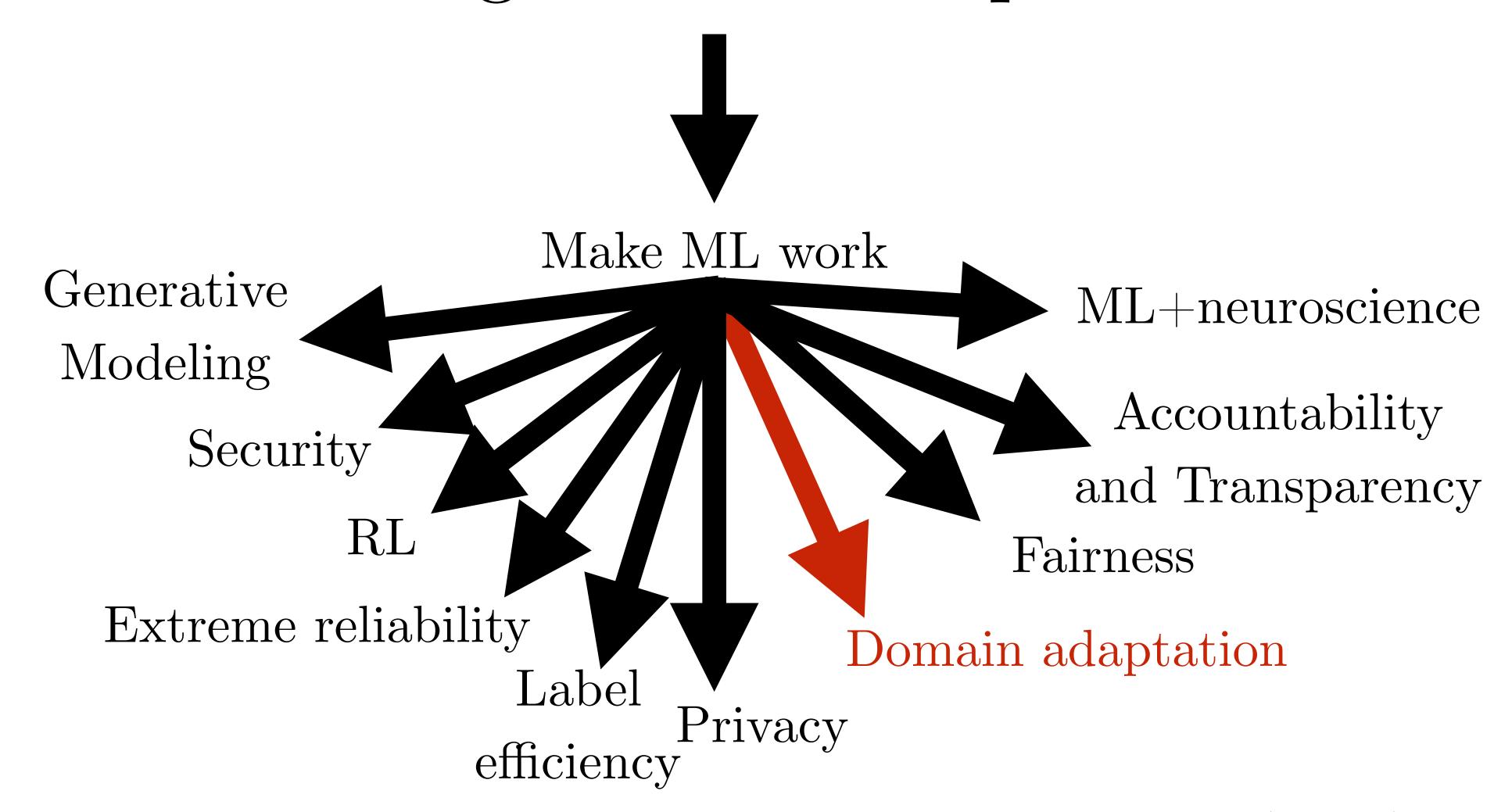
Defining (ε, δ) -Differential Privacy



Private Aggregation of Teacher Ensembles



(Papernot et al 2016)

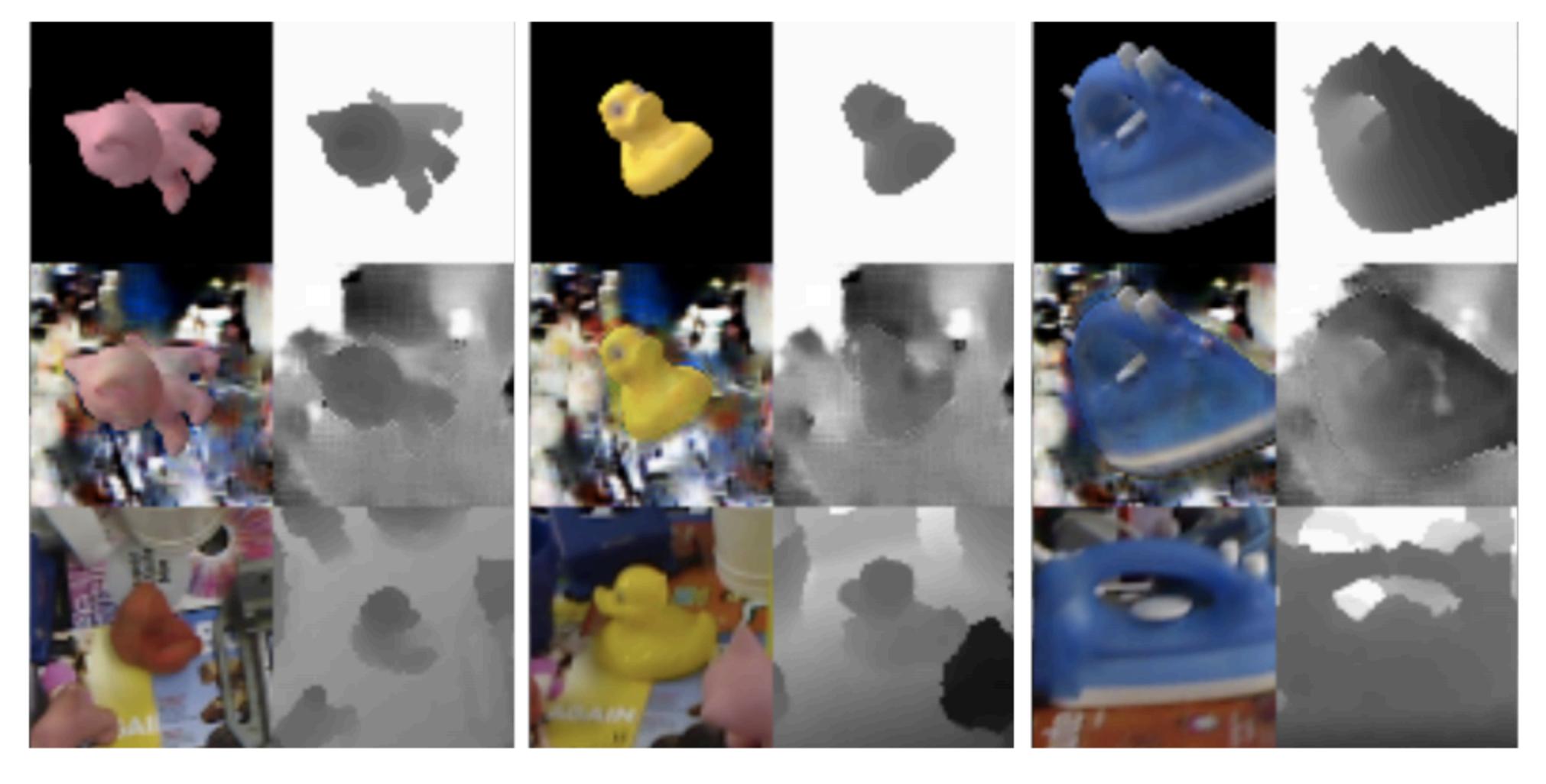


Domain Adaptation

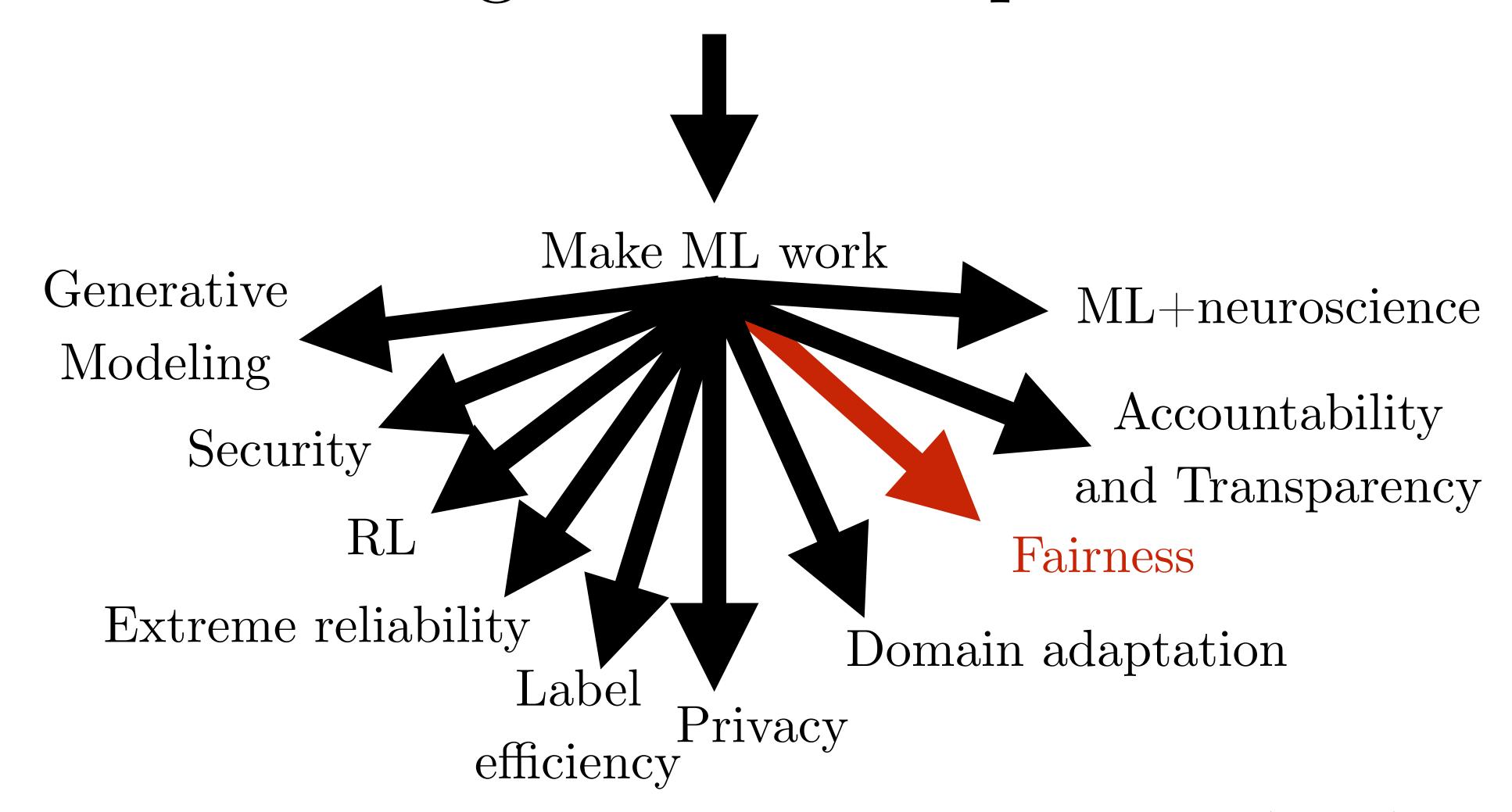
• Domain Adversarial Networks (Ganin et al, 2015)

• Professor forcing (Lamb et al, 2016): Domain-Adversarial learning in RNN hidden state

GANs for domain adaptation

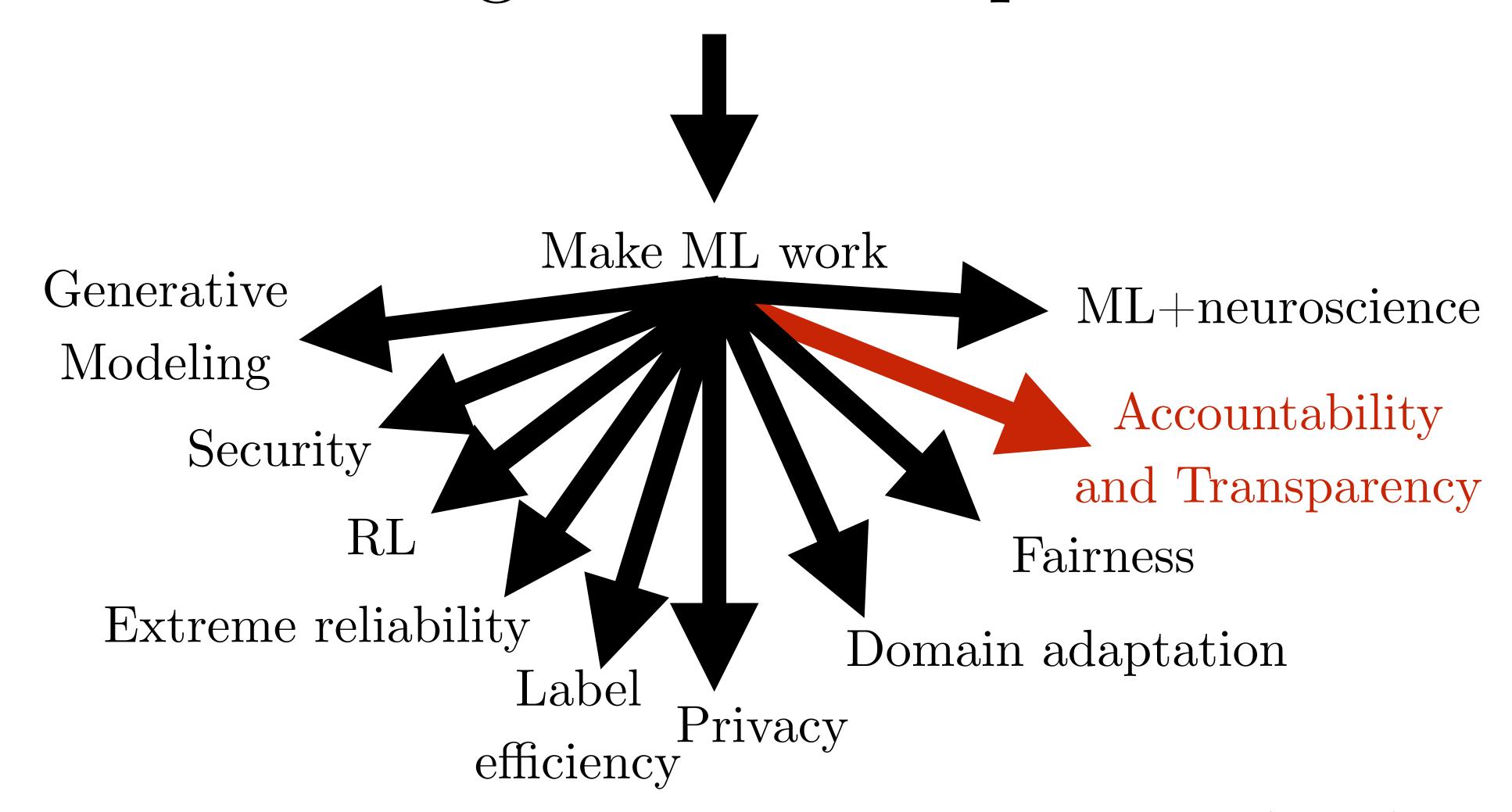


(Bousmalis et al., 2016)

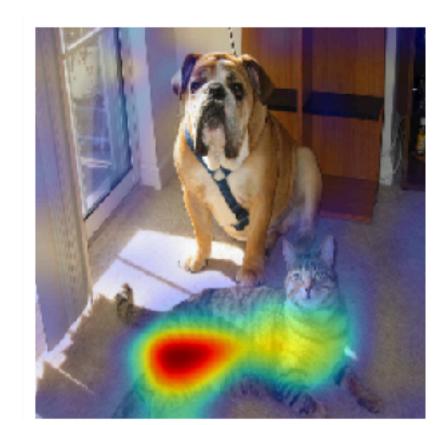


Adversarially Learned Fair Representations

- Edwards and Storkey 2015
- Learn representations that are useful for classification
- An adversary tries to recover a sensitive variable S from the representation. Primary learner tries to make S impossible to recover
- Final decision does not depend on S

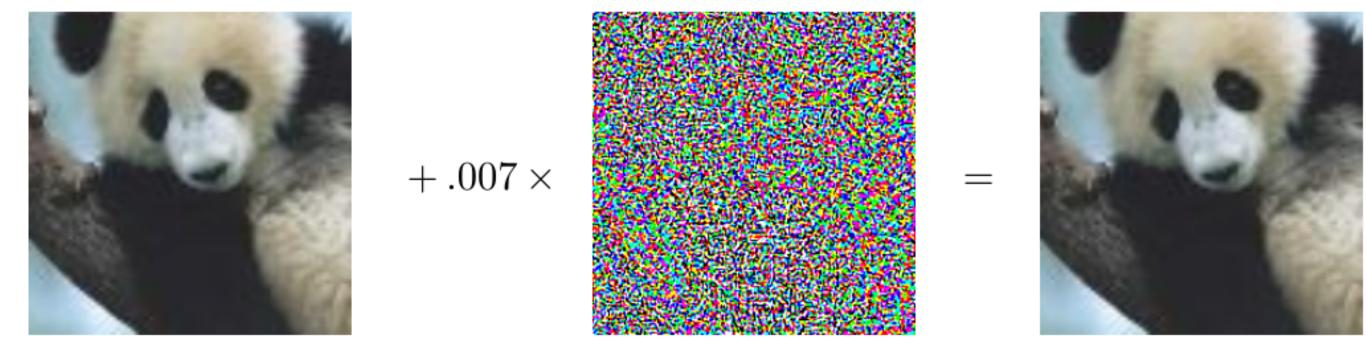


How do machine learning models work?



(c) Grad-CAM 'Cat'

(i) Grad-CAM 'Dog'

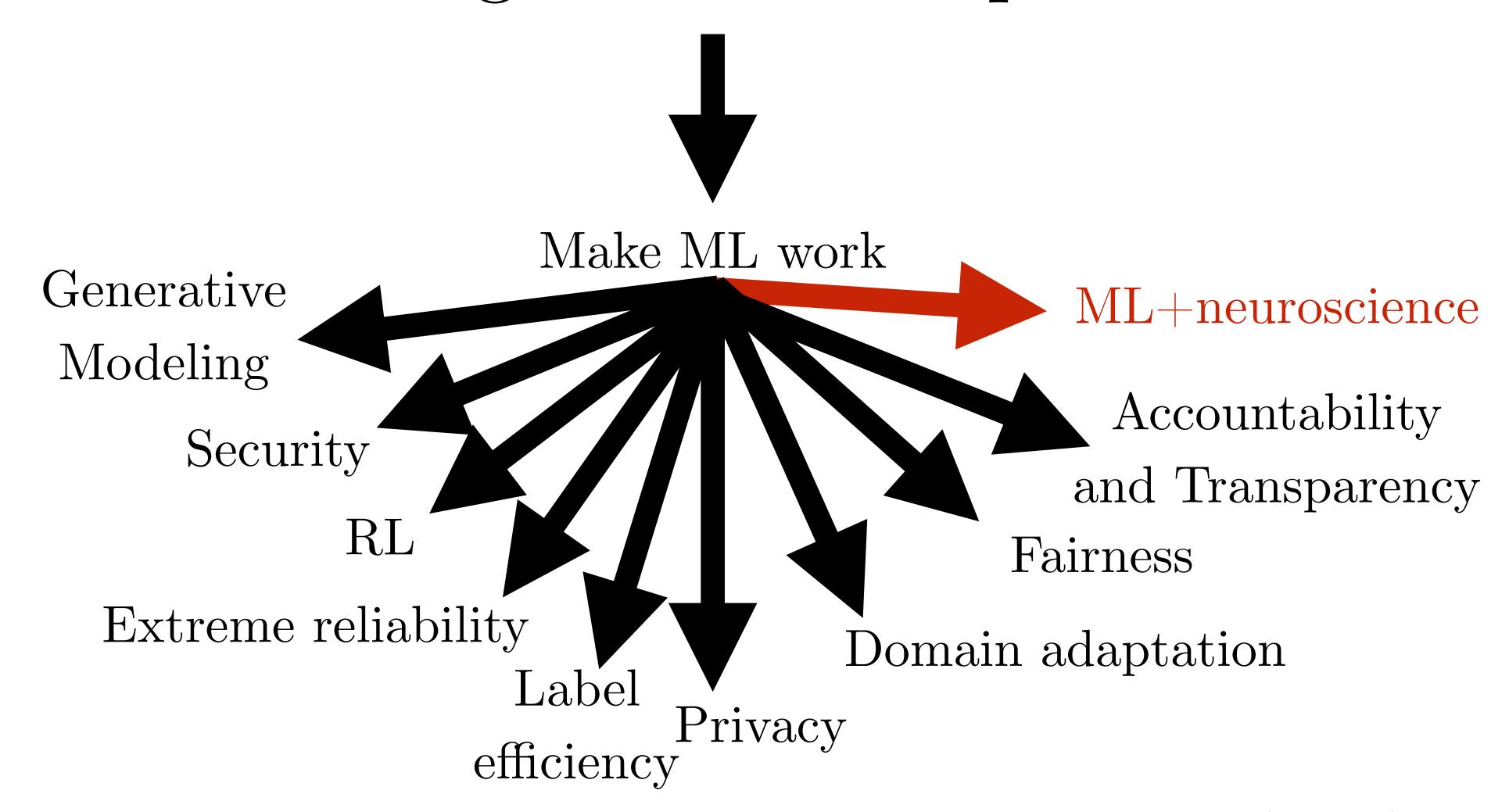


(Goodfellow et al, 2014)

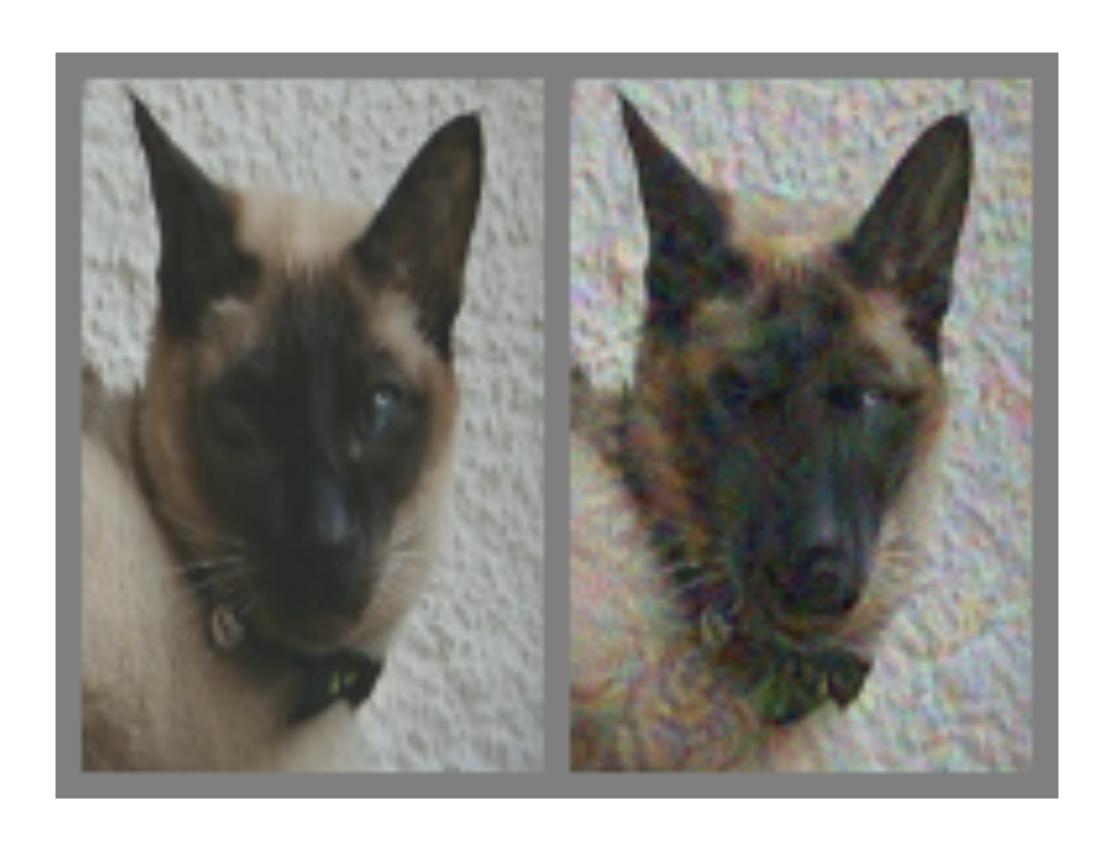
Interpretability literature: our analysis tools show that deep nets work about how you would expect them to.

Adversarial ML literature: ML models are very easy to fool and even linear models work in counter-intuitive ways.

(Selvaraju et al, 2016)



Adversarial Examples that Fool both Human and Computer Vision



Gamaleldin et al 2018

Questions