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Generative Modeling: Density 
Estimation

Training Data Density Function
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Generative Modeling: 
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)
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Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

(Goodfellow et al., 2014)
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Self-Attention GAN
State of the art FID on ImageNet: 1000 categories, 128x128 pixels

(Zhang et al., 2018)Indigo Bunting

Goldfish Redshank

Saint Bernard

Tiger Cat

Stone Wall

Broccoli

Geyser



(Goodfellow 2018)

Self-Play
1959: Arthur Samuel’s checkers agent

(Silver et al, 2017) (Bansal et al, 2017)

(OpenAI, 2017)
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What can you do with GANs?
• Simulated environments and training data 

• Missing data 

• Semi-supervised learning 

• Multiple correct answers 

• Realistic generation tasks 

• Model-based optimization 

• Automated customization 

• Domain adaptation
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Autonomous Driving Data

(Wang et al., 2017)
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GANs for simulated training data

(Shrivastava et al., 2016)
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What is in this image?

(Yeh et al., 2016)
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Generative modeling reveals a face

(Yeh et al., 2016)
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Supervised Discriminator 
for Semi-Supervised Learning

Input

Real

Hidden 
units

Fake

Input

Real dog

Hidden 
units

FakeReal cat

(Odena 2016, Salimans et al 2016)

Learn to read with 
100 labels rather 

than 60,000
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Semi-Supervised Classification 

MNIST: 100 training labels -> 80 test mistakes
SVHN: 1,000 training labels -> 4.3% test error 

CIFAR-10: 4,000 labels -> 14.4% test error

(Dai et al 2017)
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Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)
would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can

545

(Lotter et al 2016)

What happens next?
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Next Video Frame Prediction

(Lotter et al 2016)
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Next Video Frame(s) 
Prediction

(Mathieu et al. 2015)

Mean Squared Error Mean Absolute Error Adversarial

https://arxiv.org/find/cs/1/au:+Mathieu_M/0/1/0/all/0/1
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What can you do with GANs?
• Simulated environments and training data 

• Missing data 
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• Multiple correct answers 

• Realistic generation tasks 

• Model-based optimization 

• Automated customization 

• Domain adaptation
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iGAN

youtube

(Zhu et al., 2016)

https://www.youtube.com/watch?v=9c4z6YsBGQ0
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Image to Image Translation

Input Ground truth Output Input Ground truth Output

Figure 13: Example results of our method on day!night, compared to ground truth.

Input Ground truth Output Input Ground truth Output

Figure 14: Example results of our method on automatically detected edges!handbags, compared to ground truth.

(Isola et al., 2016)

Image-to-Image Translation with Conditional Adversarial Networks

Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros

Berkeley AI Research (BAIR) Laboratory
University of California, Berkeley

{isola,junyanz,tinghuiz,efros}@eecs.berkeley.edu
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Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

Abstract

We investigate conditional adversarial networks as a
general-purpose solution to image-to-image translation
problems. These networks not only learn the mapping from
input image to output image, but also learn a loss func-
tion to train this mapping. This makes it possible to apply
the same generic approach to problems that traditionally
would require very different loss formulations. We demon-
strate that this approach is effective at synthesizing photos
from label maps, reconstructing objects from edge maps,
and colorizing images, among other tasks. As a commu-
nity, we no longer hand-engineer our mapping functions,
and this work suggests we can achieve reasonable results
without hand-engineering our loss functions either.

Many problems in image processing, computer graphics,
and computer vision can be posed as “translating” an input
image into a corresponding output image. Just as a concept

may be expressed in either English or French, a scene may
be rendered as an RGB image, a gradient field, an edge map,
a semantic label map, etc. In analogy to automatic language
translation, we define automatic image-to-image translation
as the problem of translating one possible representation of
a scene into another, given sufficient training data (see Fig-
ure 1). One reason language translation is difficult is be-
cause the mapping between languages is rarely one-to-one
– any given concept is easier to express in one language
than another. Similarly, most image-to-image translation
problems are either many-to-one (computer vision) – map-
ping photographs to edges, segments, or semantic labels,
or one-to-many (computer graphics) – mapping labels or
sparse user inputs to realistic images. Traditionally, each of
these tasks has been tackled with separate, special-purpose
machinery (e.g., [7, 15, 11, 1, 3, 37, 21, 26, 9, 42, 46]),
despite the fact that the setting is always the same: predict
pixels from pixels. Our goal in this paper is to develop a
common framework for all these problems.
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Unsupervised Image-to-Image Translation

(Liu et al., 2017)

Day to night
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CycleGAN

(Zhu et al., 2017)
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Text-to-Image Synthesis

(Zhang et al., 2016)

This bird has a 
yellow belly and 
tarsus, grey back, 
wings, and brown 
throat, nape with a 
black face 
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What can you do with GANs?
• Simulated environments and training data 

• Missing data 

• Semi-supervised learning 

• Multiple correct answers 

• Realistic generation tasks 

• Model-based optimization 

• Automated customization 

• Domain adaptation
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Designing DNA to optimize 
protein binding

Figure 8: Protein binding optimization with a learned predictor model. a) Original experimental
data contains sequences and measured binding scores (horizontal axis); we fit a model to this data
(vertical axis) to serve as an oracle for scoring generated sequences. Plot shows scores on held-out
test data (Spearman correlation 0.97). b) Data is restricted to sequences with oracle scores in the
40th percentile (orange distribution), then used to train a generator and predictor model. Generated
sequences are optimized to have as high binding score as possible. These genererated samples are
then scored with the oracle (green distribution). The design process has clearly picked up enough
structure that it can generalize well beyond the training data.

a predictor and a generator on this restricted dataset. To emphasize, neither model saw any scores

beyond the 40th percentile. Nevertheless, as can be seen in Fig. 8, after optimization using our joint
method, the designed sequences nearly all have scores higher than anything seen in the training set.
Some designed sequences even have binding values three times higher than anything in the training
data. This result indicates that a generative DNA design approach can be quite powerful for designing
probe sequences even when only a weak binding signal is available.

3.2.3 Optimizing Multiple Properties

As noted in Sec. 2.2.1, the activation maximization method can be used to simultaneously optimize
multiple – possibly competing – properties. The joint method already does this to some extent. The
predictor directs generated data to more desirable configurations; at the same time, the generator
constrains generated data to be realistic. In this experiment, we performed a simultaneous activation
maximization procedure on two predictors, each computing a different binding score. While we do
not employ a generator, in principle one could also be included.

Design process Our protein-binding dataset contains binding measurements on the same probe
sequences for multiple proteins from the same family. Leveraging this, our goal is the following: to
design DNA sequences which preferentially bind to one protein in a family but not the other. We also
undertake this challenge for the situation where the two predictors model binding of the same protein,
but under two different molecular concentrations. Sample results of this design process are shown in
Fig. 9. Like in Sec. 3.2.2, we are able to design many sequences with characteristics that generalize
well beyond the explicit content of the training data. Because of the underlying similarities, the two
predictors largely capture the same structure, differing only in subtle ways. Our design process lets
us explore these subtle differences by generating sequences which exhibit them.

4 Summary & Future Work

We have introduced several ways to generate and design genomic sequences using deep generative
models. We presented a GAN-based generative model for DNA, proposed a variant of activation
maximization for DNA sequence data, and combined these two methods together into a joint method.
Our computational experiments indicate that these generative tools learn important structure from

9

(Killoran et al, 2017)
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What can you do with GANs?
• Simulated environments and training data 

• Missing data 

• Semi-supervised learning 

• Multiple correct answers 

• Realistic generation tasks 

• Automated Customization 

• Domain Adaptation
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Personalized GANufacturing

(Hwang et al 2018)
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Domain Adaptation

• Domain Adversarial Networks (Ganin et al, 2015) 

• Professor forcing (Lamb et al, 2016): Domain-
Adversarial learning in RNN hidden state
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GANs for domain adaptation

(Bousmalis et al., 2016)
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Tips and Tricks
• Spectral normalization (Miyato et al 2017) in both 

discriminator and generator (Zhang et al 2018) 

• Different learning rate for generator and discriminator (Heusel 
et al 2017) 

• No need to run discriminator more often than generator 
(Zhang et al 2018) 

• Many different loss functions all work well (Lucic et al 2017); 
spend more time tuning hyperparameters than trying 
different losses
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Track updates at the GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo
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Questions


