MedGAN ID-CGAN CoGAN b-GAN LS-GAN LAPGAN InfoGAN CatGAN LSGAN Introduction to GANS McGAN IEEE Workshop on Perception Beyond the Visible Spectrum FF-GAN C-RNN-GAN Salt Lake City, 2018-06-18 C-VAE-GAN CCGAN MAGAN 3D-GAN DualGAN GAWWN **Bayesian GAN** EBGAN ALI MARTA-GAN f-GAN A++ ArtGAN

LR-GAN CGAN IcGAN DiscoGANMPM-GAN AdaGAN AMGAN iGAN IAN SAGAN Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN **BS-GAN** GoGAN

DR-GAN AC-GAN DCGAN BiGAN CycleGAN **GP-GAN** AnoGAN DTN MAD-GAN AL-CGAN MalGAN BEGAN

Generative Modeling: Density Estimation

Training Data

Density Function

Generative Modeling: Sample Generation

Training Data (CelebA)

Sample Generator (Karras et al, 2017)

(Goodfellow et al., 2014)

Self-Attention GAN State of the art FID on ImageNet: 1000 categories, 128x128 pixels

Goldfish

Indigo Bunting

Redshank

Stone Wall

Broccoli

Tiger Cat

Saint Bernard

Self-Play

1959: Arthur Samuel's checkers agent

(OpenAI, 2017)

(Bansal et al, 2017)

(Goodfellow 2018)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Model-based optimization
- Automated customization
- Domain adaptation

Autonomous Driving Data

Input labels

Synthesized image

(Wang et al., 2017)

GANs for simulated training data Unlabeled Real Images

Synthetic

Refined

(Shrivastava et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Automated customization
- Domain adaptation

What is in this image?

(Yeh et al., 2016)

Generative modeling reveals a face

(Yeh et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Model-based optimization
- Automated customization
- Domain adaptation

Supervised Discriminator for Semi-Supervised Learning

(Odena 2016, Salimans et al 2016)

(Goodfellow 2018)

Semi-Supervised Classification

MNIST: 100 training labels -> 80 test mistakes SVHN: 1,000 training labels -> 4.3% test error CIFAR-10: 4,000 labels -> 14.4% test error (Dai et al 2017)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Model-based optimization
- Automated customization
- Domain adaptation

Next Video Frame Prediction

What happens next?

(Lotter et al 2016)

Ground Truth

Next Video Frame Prediction

(Lotter et al 2016)

Next Video Frame(s) Prediction Mean Absolute Error

Mean Squared Error

(Mathieu et al. 2015)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Model-based optimization
- Automated customization
- Domain adaptation

iGAN

youtube

(Zhu et al., 2016)

Image to Image Translation

(Isola et al., 2016)

Unsupervised Image-to-Image Translation

Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)

Text-to-Image Synthesis

This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face

(Zhang et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Model-based optimization
- Automated customization
- Domain adaptation

Designing DNA to optimize protein binding

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Automated Customization
- Domain Adaptation

Personalized GANufacturing

(Hwang et al 2018)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Automated Customization
- Domain Adaptation

• Domain Adversarial Networks (Ganin et al, 2015)

VIPER

• Professor forcing (Lamb et al, 2016): Domain-Adversarial learning in RNN hidden state

Domain Adaptation

PRID

CUHK

GANs for domain adaptation

(Bousmalis et al., 2016)

Tips and Tricks

- Spectral normalization (Miyato et al 2017) in both discriminator and generator (Zhang et al 2018)
- et al 2017)
 - (Zhang et al 2018)
- spend more time tuning hyperparameters than trying different losses

• Different learning rate for generator and discriminator (Heusel

• No need to run discriminator more often than generator

• Many different loss functions all work well (Lucic et al 2017);

Cumulative number of named GAN papers by month

3	60			
2	15			
3	30			
2	15			
3	15			
3	00			
20	55			
2	/0			
v 2	55			
e 24	40			
2	25			
± 2	10			
1	95			
- ja 18	80			
Ln 10	65			
<u> </u>	50			
ta 1	35			
⊢ 13	20			
1	05			
	90			
	75			
	60			
	45			
	30			
	15			
	0			
	2014	201	5	
			W	

Track updates at the GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo

Questions

