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Generative Modeling: Density 
Estimation

Training Data Density Function
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Generative Modeling: 
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)
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Adversarial Nets Framework
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(Goodfellow et al., 2014)
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Self-Play
1959: Arthur Samuel’s checkers agent

(Silver et al, 2017) (Bansal et al, 2017)

(OpenAI, 2017)
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3.5 Years of Progress on Faces
p.
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General Framework for AI & Security Threats

2014 2015 2016 2017

(Brundage et al, 2018)

http://www.maliciousaireport.com
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<2 Years of Progress on ImageNet

monarch butterfly goldfinch daisy grey whaleredshank

Published as a conference paper at ICLR 2018

Figure 7: 128x128 pixel images generated by SN-GANs trained on ILSVRC2012 dataset. The
inception score is 21.1±.35.
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monarch butterfly goldfinch daisy grey whaleredshank

monarch butterfly goldfinch daisy grey whaleredshank

Odena et al 
2016

Miyato et al 
2017

Zhang et al 
2018
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Self-Attention GAN
State of the art FID on ImageNet: 1000 categories, 128x128 pixels

(Zhang et al., 2018)Indigo Bunting

Goldfish Redshank
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From GAN to SAGAN
• Depth and Convolution 

• Class-conditional generation 

• Spectral Normalization 

• Hinge loss 

• Two-timescale update rule 

• Self-attention



(Goodfellow 2018)

No Convolution Needed to Solve Simple Tasks

Original GAN, 2014
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Depth and Convolution for Harder Tasks
Original GAN (CIFAR-10) DCGAN (ImageNet)

No convolution One convolutional layer Many convolutional layers
(Radford et al, 2015)
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Class-Conditional GANs

(Mirza and Osindero, 2014)
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AC-GAN: Specialist Generators

(Odena et al, 2016)



(Goodfellow 2018)

SN-GAN: Shared Generator

(Miyato et al, 2017)
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Spectral Normalization

(Miyato et al, 2017)
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Hinge Loss

(Miyato et al 2017, Lim and Ye 2017, Tran et al 2017)
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Two-Timescale Update Rule
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Self-Attention

Use layers from 
Wang et al 2018
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Applying GANs

• Semi-supervised Learning 

• Model-based optimization 

• Extreme personalization 

• Program synthesis
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Supervised Discriminator 
for Semi-Supervised Learning

Input

Real

Hidden 
units

Fake

Input

Real dog

Hidden 
units

FakeReal cat

(Odena 2016, Salimans et al 2016)

Learn to read with 
100 labels rather 

than 60,000
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Semi-Supervised Classification 

MNIST: 100 training labels -> 80 test mistakes
SVHN: 1,000 training labels -> 4.3% test error 

CIFAR-10: 4,000 labels -> 14.4% test error

(Dai et al 2017)
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Designing DNA to optimize 
protein binding

Figure 8: Protein binding optimization with a learned predictor model. a) Original experimental
data contains sequences and measured binding scores (horizontal axis); we fit a model to this data
(vertical axis) to serve as an oracle for scoring generated sequences. Plot shows scores on held-out
test data (Spearman correlation 0.97). b) Data is restricted to sequences with oracle scores in the
40th percentile (orange distribution), then used to train a generator and predictor model. Generated
sequences are optimized to have as high binding score as possible. These genererated samples are
then scored with the oracle (green distribution). The design process has clearly picked up enough
structure that it can generalize well beyond the training data.

a predictor and a generator on this restricted dataset. To emphasize, neither model saw any scores

beyond the 40th percentile. Nevertheless, as can be seen in Fig. 8, after optimization using our joint
method, the designed sequences nearly all have scores higher than anything seen in the training set.
Some designed sequences even have binding values three times higher than anything in the training
data. This result indicates that a generative DNA design approach can be quite powerful for designing
probe sequences even when only a weak binding signal is available.

3.2.3 Optimizing Multiple Properties

As noted in Sec. 2.2.1, the activation maximization method can be used to simultaneously optimize
multiple – possibly competing – properties. The joint method already does this to some extent. The
predictor directs generated data to more desirable configurations; at the same time, the generator
constrains generated data to be realistic. In this experiment, we performed a simultaneous activation
maximization procedure on two predictors, each computing a different binding score. While we do
not employ a generator, in principle one could also be included.

Design process Our protein-binding dataset contains binding measurements on the same probe
sequences for multiple proteins from the same family. Leveraging this, our goal is the following: to
design DNA sequences which preferentially bind to one protein in a family but not the other. We also
undertake this challenge for the situation where the two predictors model binding of the same protein,
but under two different molecular concentrations. Sample results of this design process are shown in
Fig. 9. Like in Sec. 3.2.2, we are able to design many sequences with characteristics that generalize
well beyond the explicit content of the training data. Because of the underlying similarities, the two
predictors largely capture the same structure, differing only in subtle ways. Our design process lets
us explore these subtle differences by generating sequences which exhibit them.

4 Summary & Future Work

We have introduced several ways to generate and design genomic sequences using deep generative
models. We presented a GAN-based generative model for DNA, proposed a variant of activation
maximization for DNA sequence data, and combined these two methods together into a joint method.
Our computational experiments indicate that these generative tools learn important structure from
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(Killoran et al, 2017)
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Personalized GANufacturing

(Hwang et al 2018)
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SPIRAL

(Ganin et al, 2018)

Synthesizing Programs for Images Using Reinforced Adversarial Learning
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Other applications
• Planning 

• World Models for RL agents 

• Fairness and Privacy 

• Missing data 

• Topics covered at workshop: 

• Training data for other agents (Philip Isola, Taesung Park, Jun-Yan Zhu) 

• Inference in other probabilistic models (Mihaela Rosca) 

• Domain adaptation (Judy Hoffman) 

• Imitation Learning (Stefano Ermon)
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Track updates at the GAN Zoo

https://github.com/hindupuravinash/the-gan-zoo
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Questions


