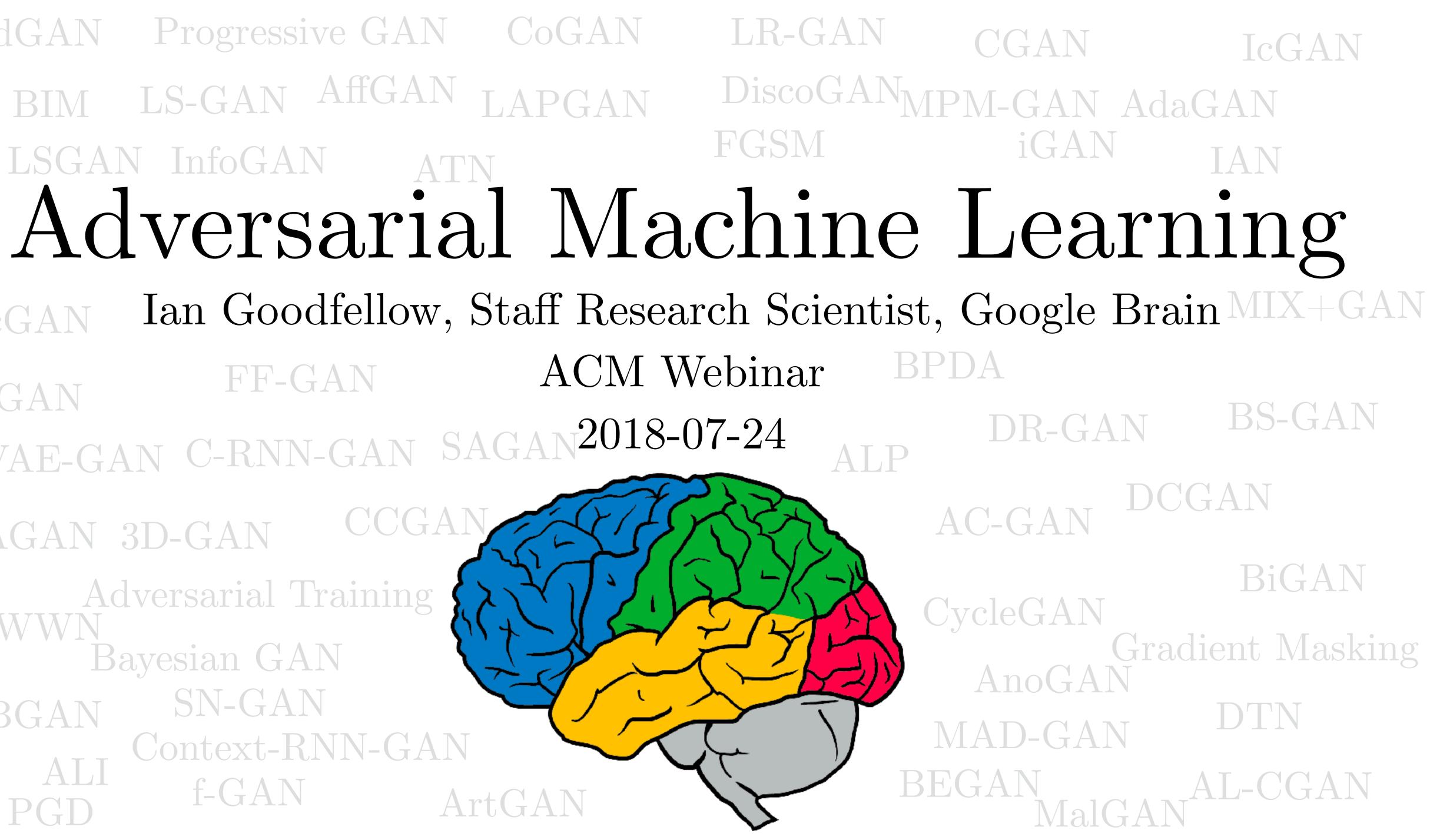
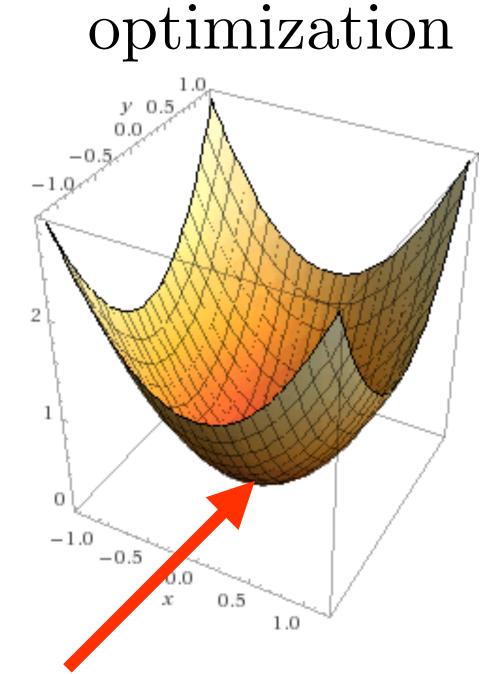
MedGAN Progressive GAN CoGAN BIM LS-GAN AffGAN LAPGAN LSGAN InfoGAN McGAN FF-GAN MGAN C-VAE-GAN C-RNN-GAN SAGAN2018-07-24 CCGAN MAGAN 3D-GAN Adversarial Training **Bayesian GAN** SN-GAN EBGAN Context-RNN-GAN ALI f-GAN ArtGAN PGD



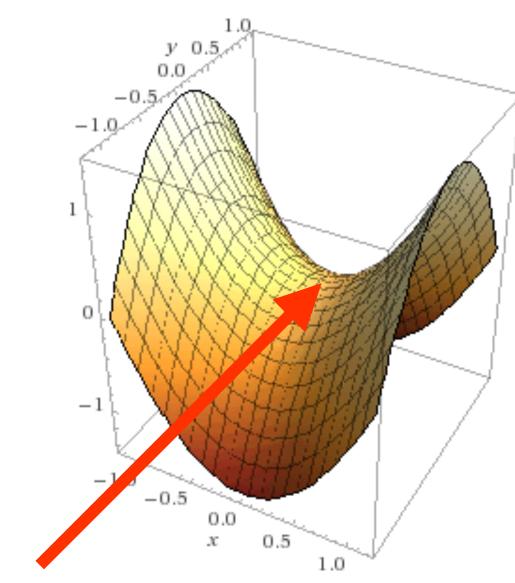
Adversarial Machine Learning

Traditional ML:



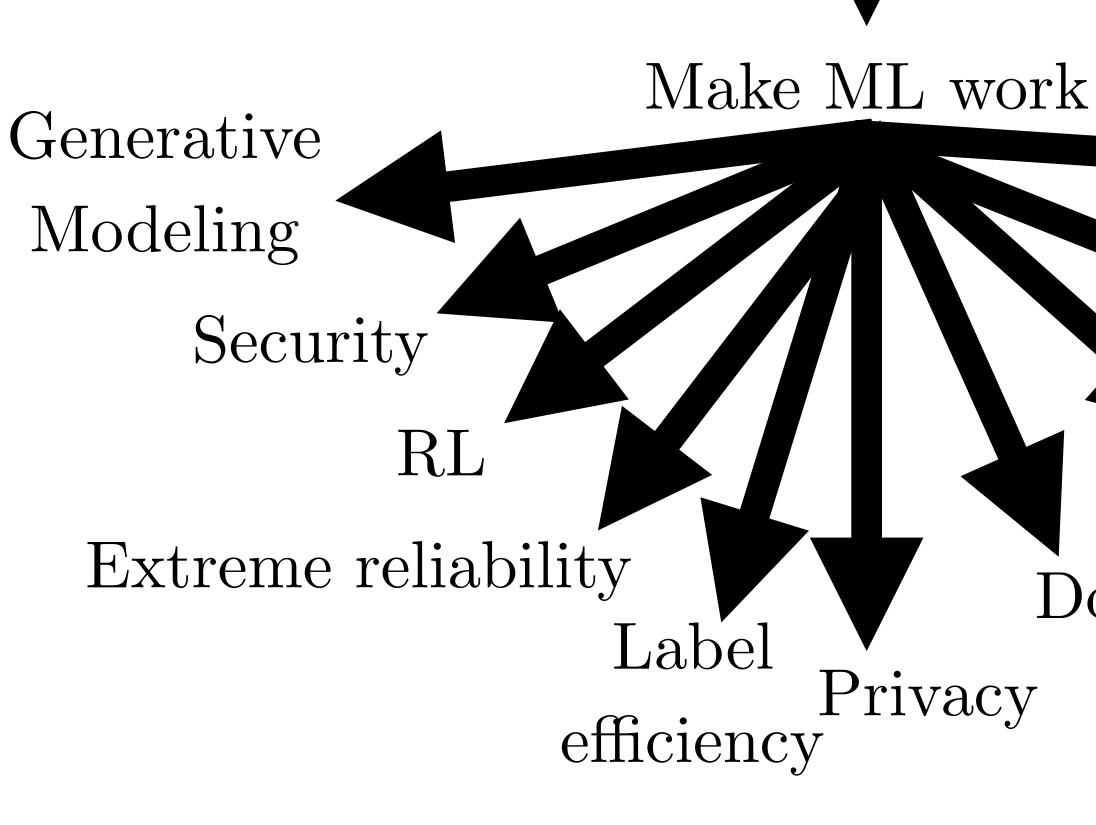
Minimum One player, one cost

Adversarial ML: game theory



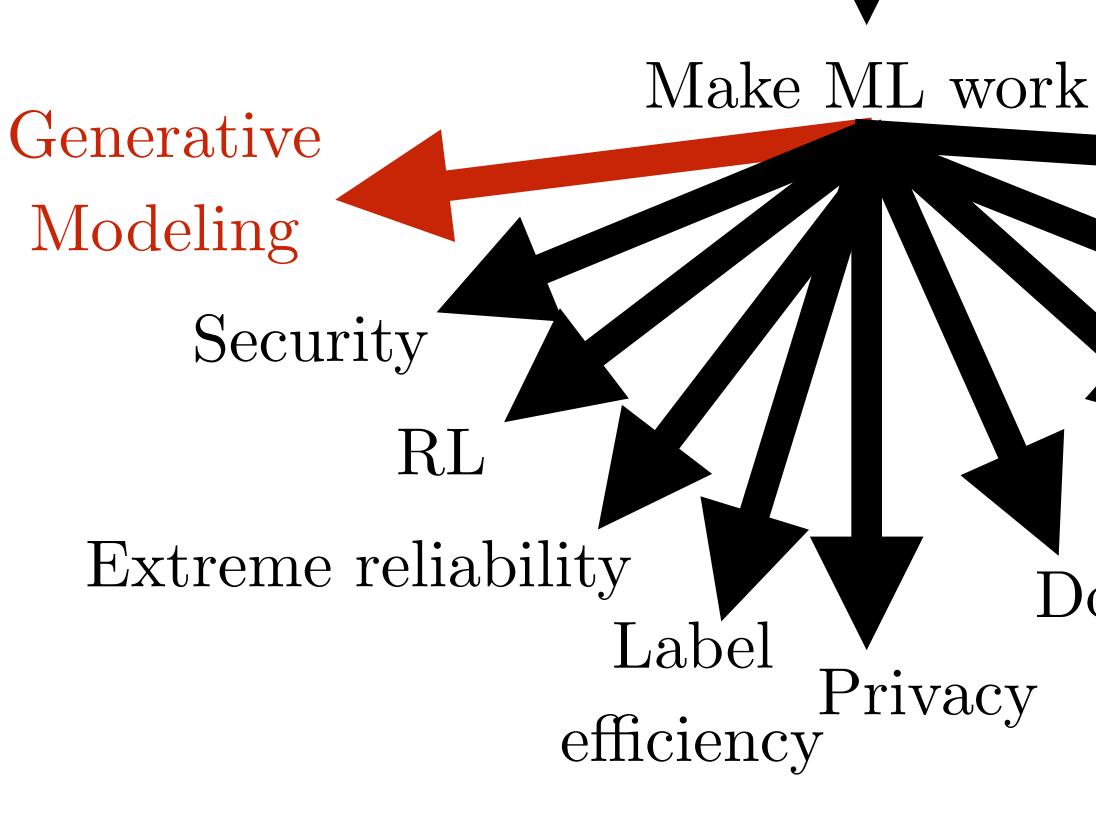
Equilibrium

More than one player, more than one cost



ML+neuroscience

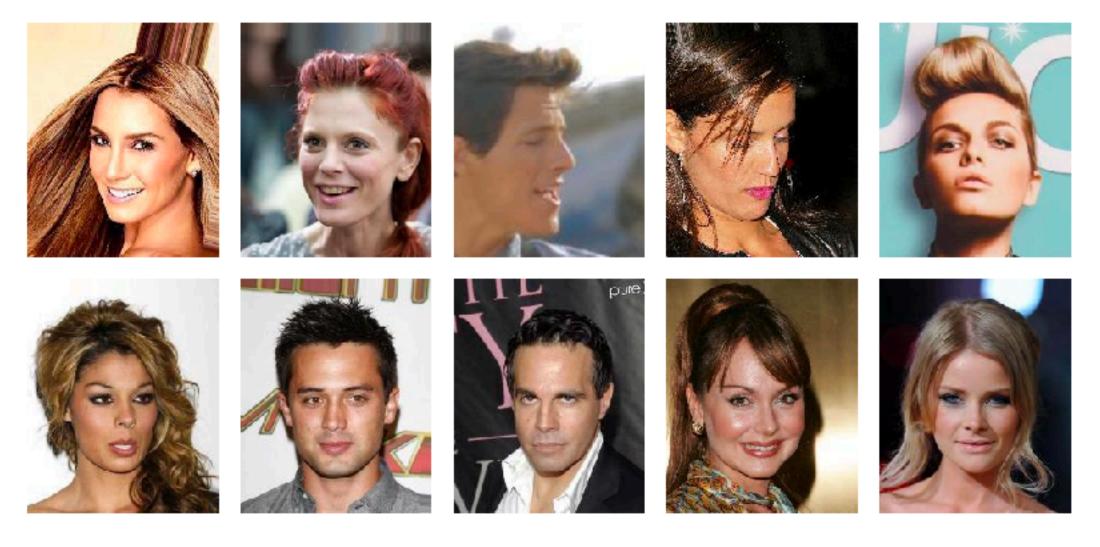
Accountability and Transparency Fairness



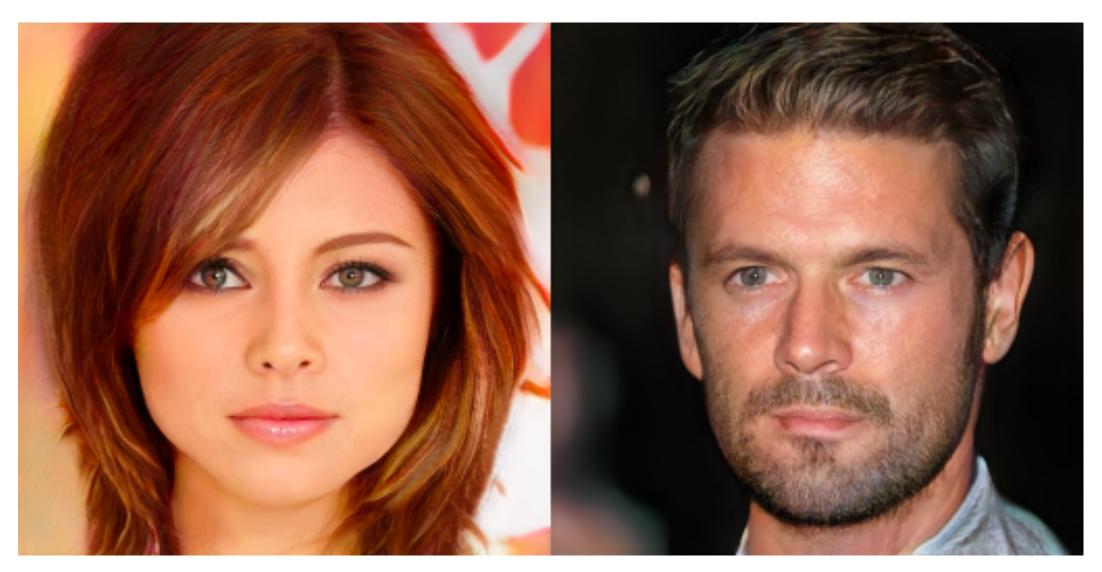
ML+neuroscience

Accountability and Transparency Fairness

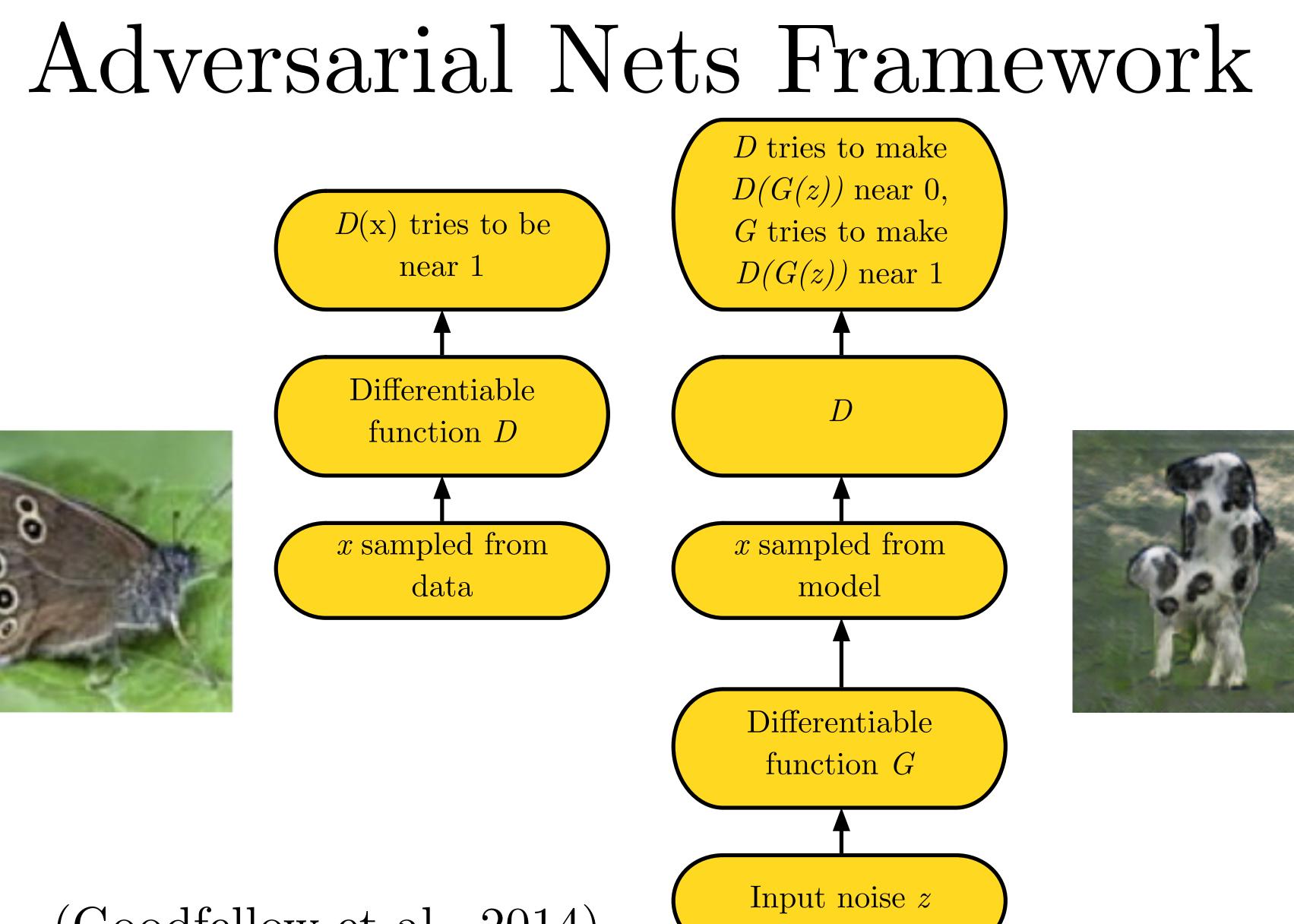
Generative Modeling: Sample Generation



Training Data (CelebA)

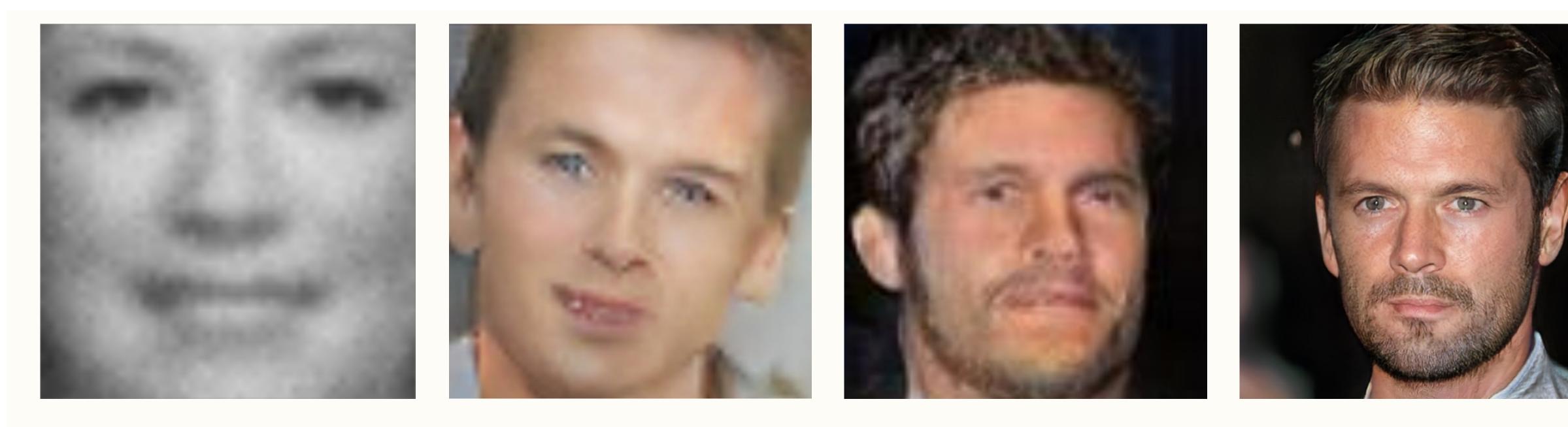


Sample Generator (Karras et al, 2017)



(Goodfellow et al., 2014)

3.5 Years of Progress on Faces



2014

2015

2016

2017

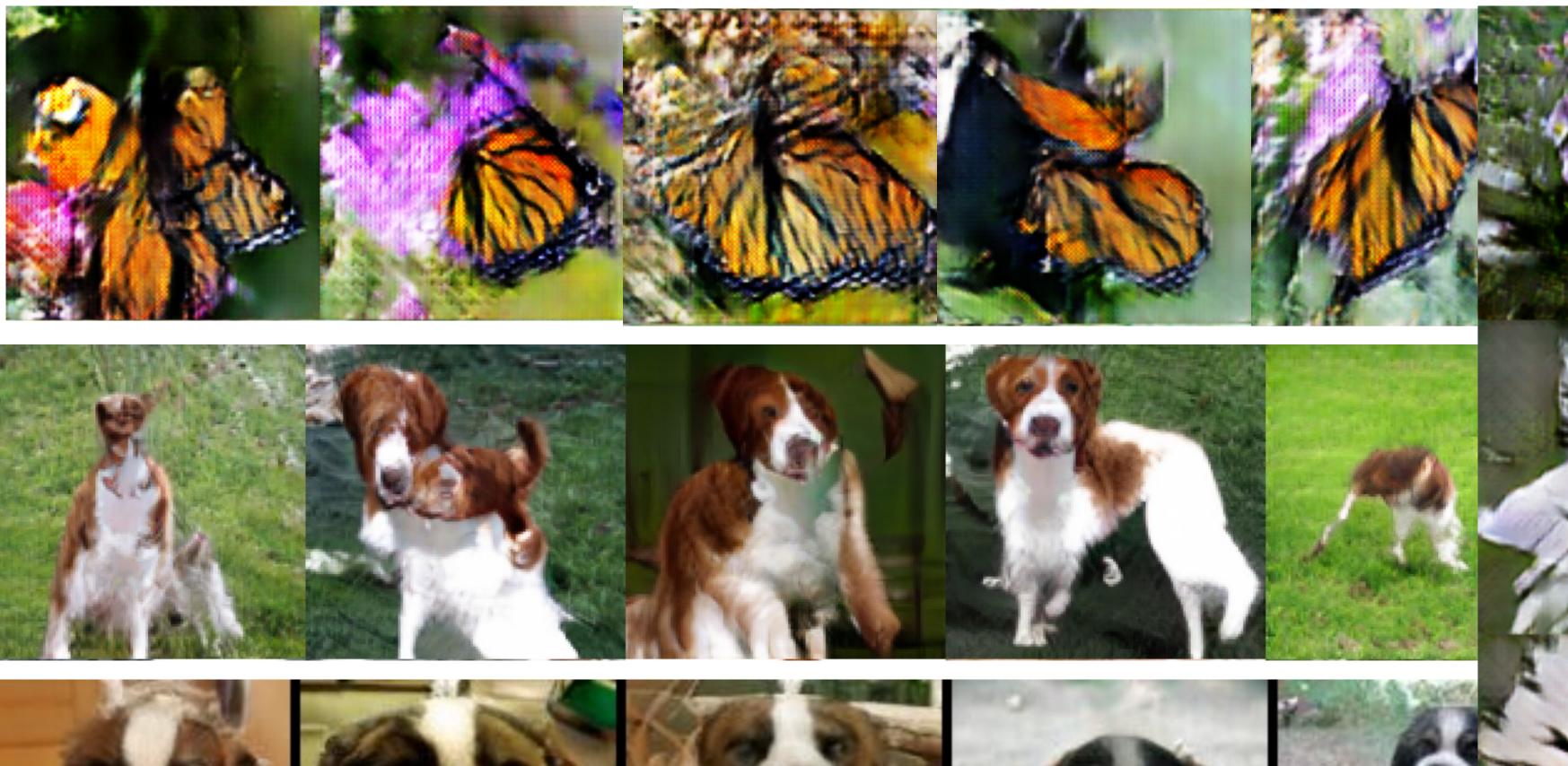
(Brundage et al, 2018)

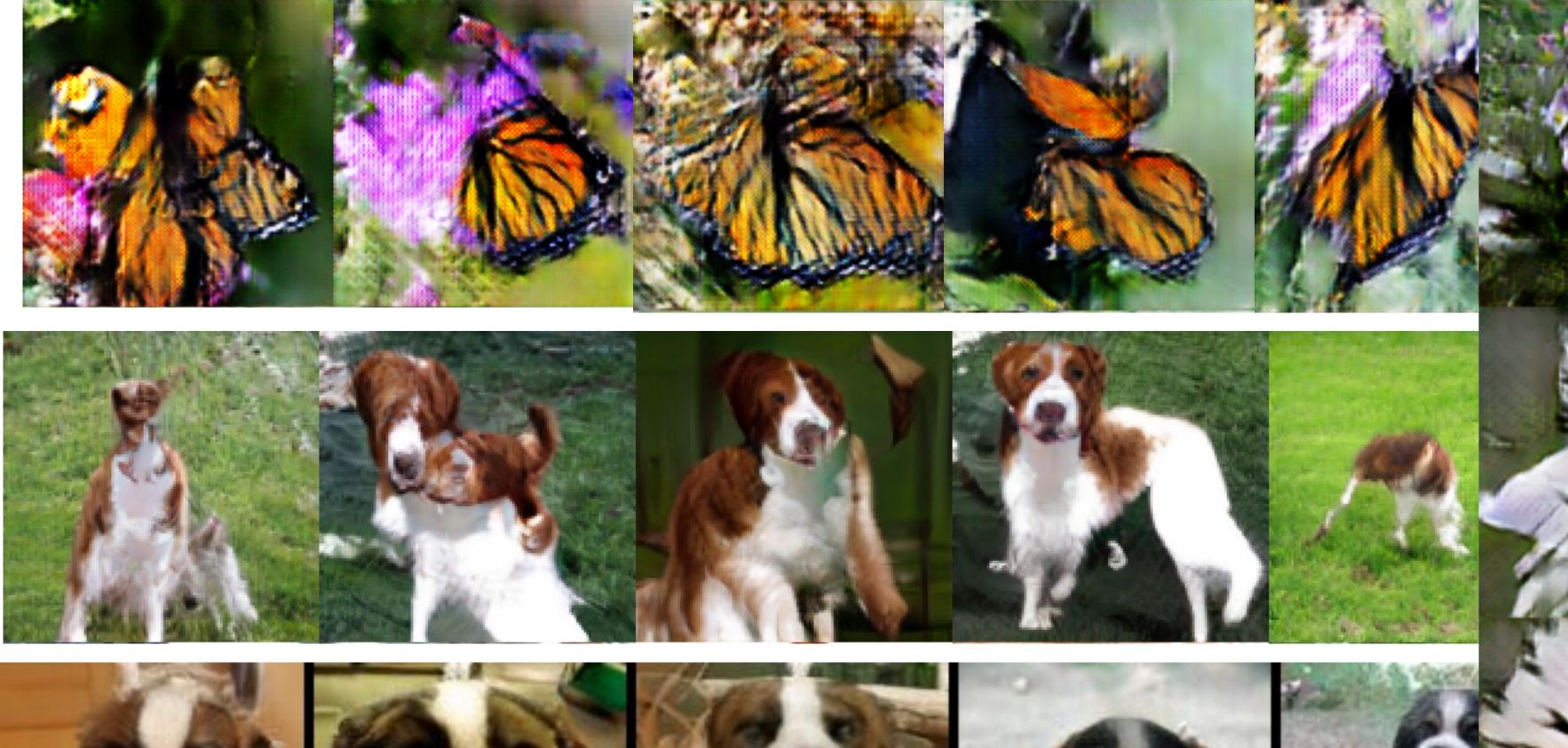
(Goodfellow 2018)

<2 Years of Progress on ImageNet

Odena et al 2016

Miyato et al 2017

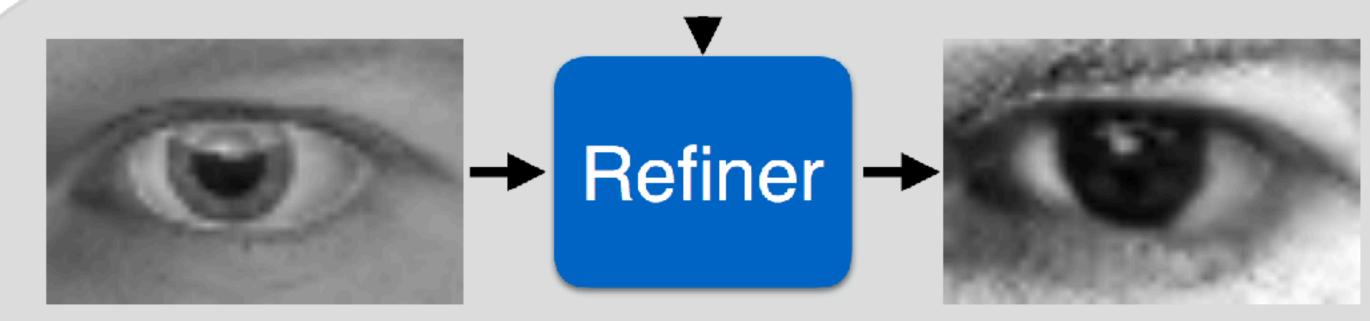




Zhang et al 2018

(Goodfellow 2018)

GANs for simulated training data Unlabeled Real Images



Synthetic

Refined

(Shrivastava et al., 2016)

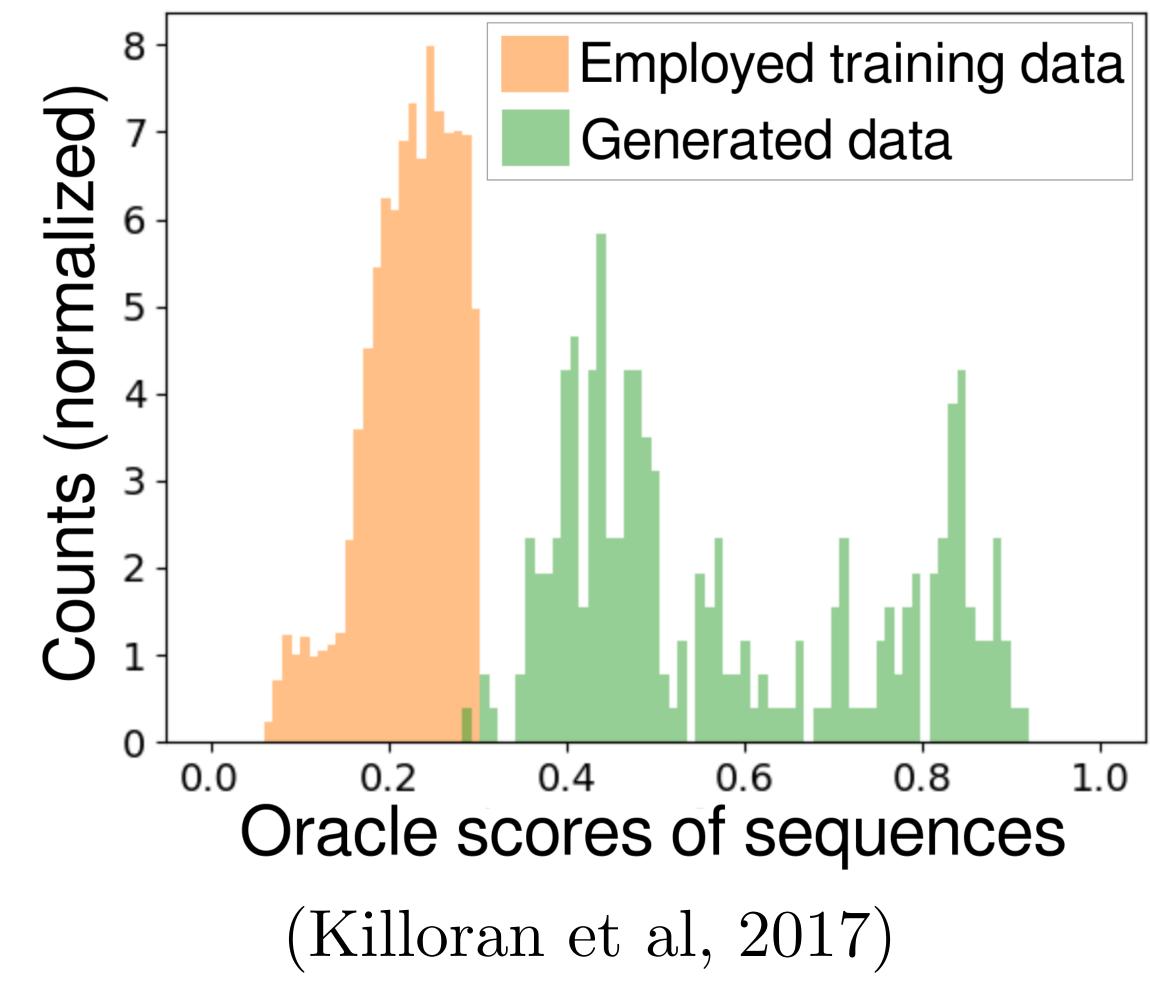
Unsupervised Image-to-Image Translation

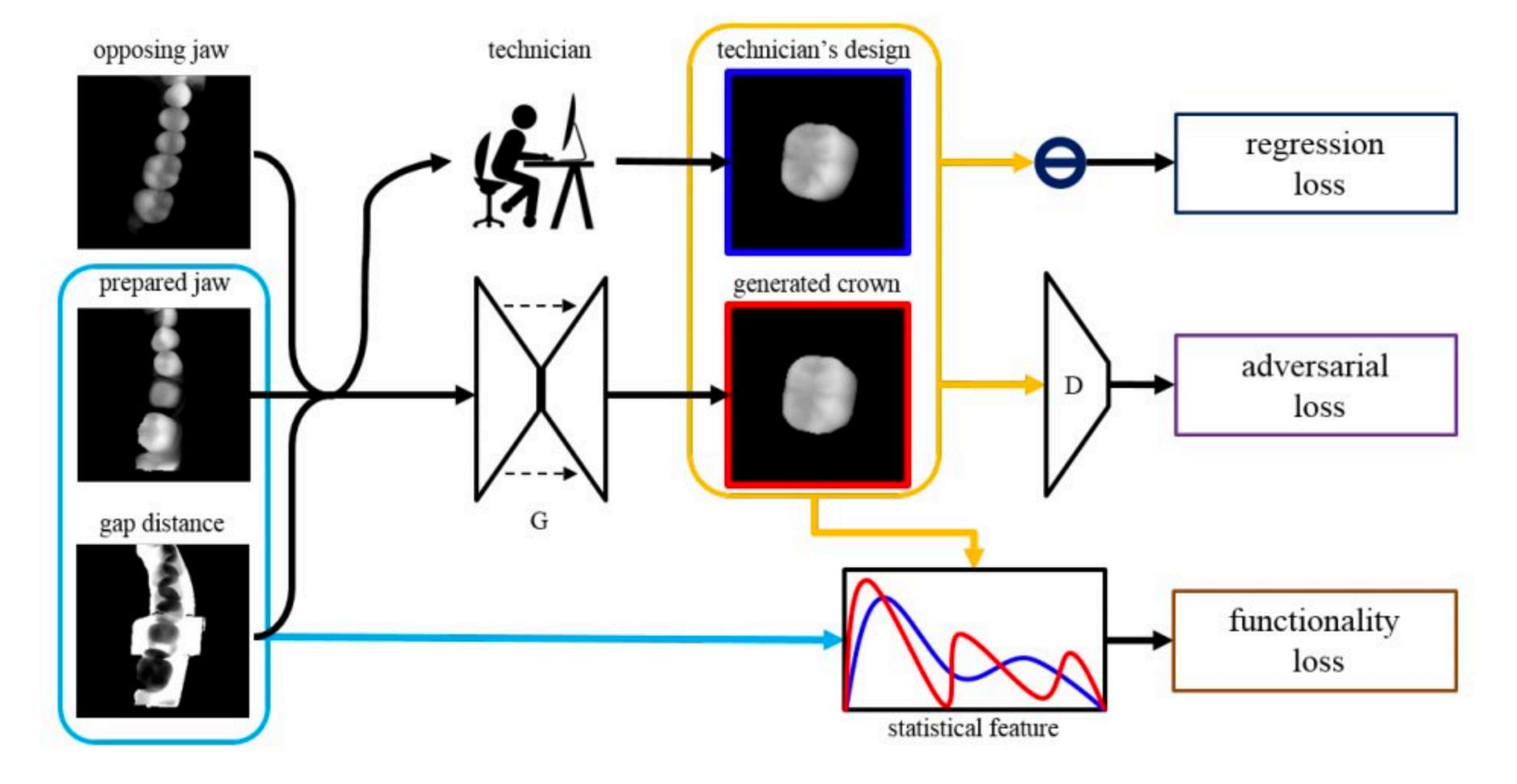
Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)





Personalized GANufacturing

(Hwang et al 2018)

Self-Attention GAN State of the art FID on ImageNet: 1000 categories, 128x128 pixels

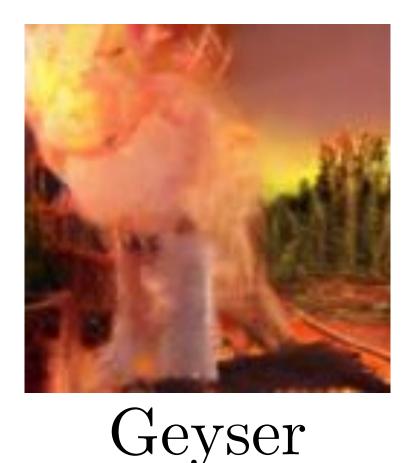
Goldfish

Indigo Bunting

Redshank

Stone Wall

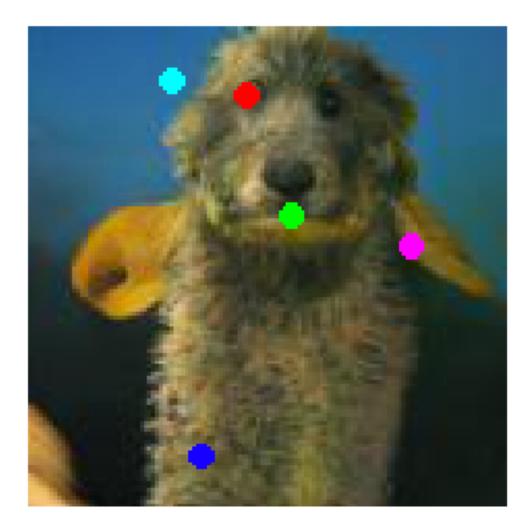
Broccoli



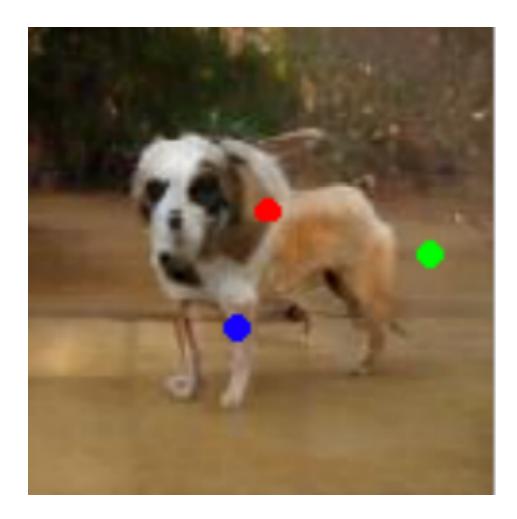
Tiger Cat

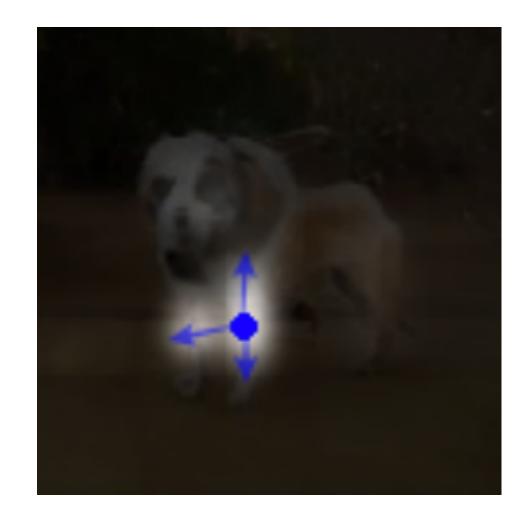
Saint Bernard

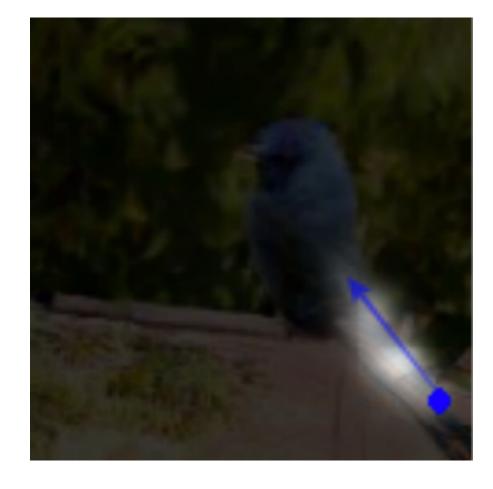
Self-Attention

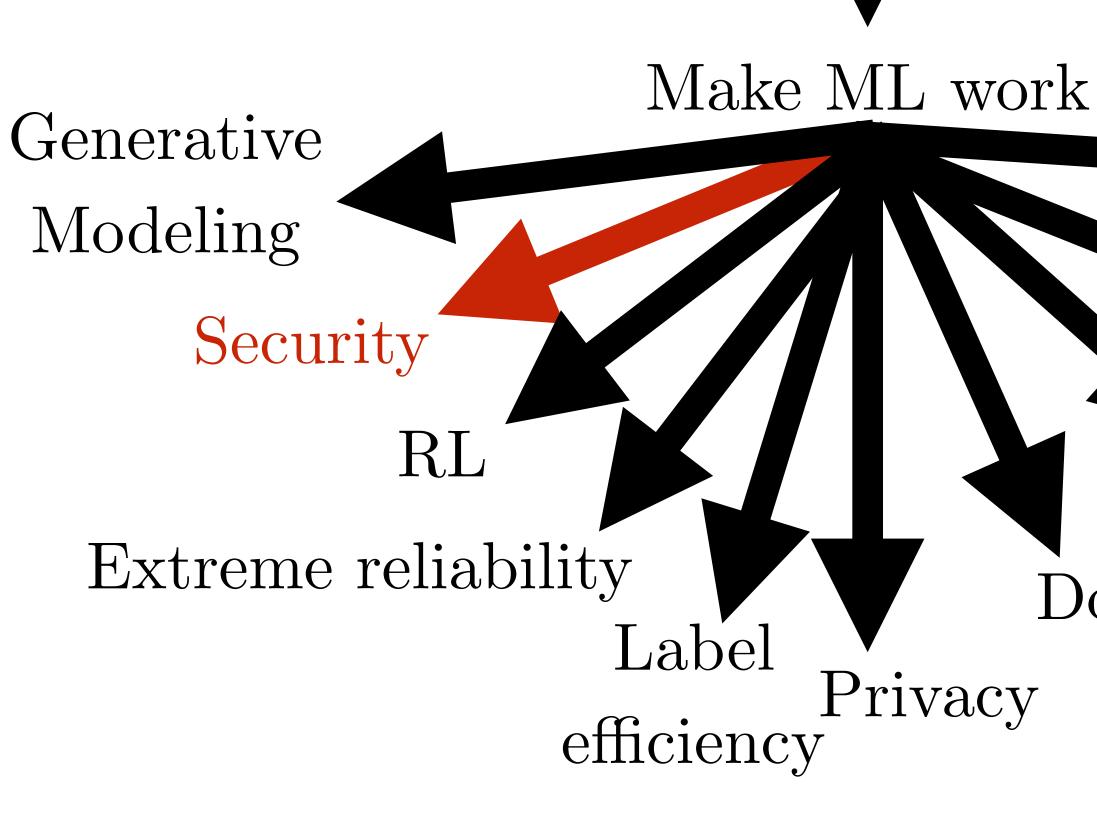


Use layers from Wang et al 2018





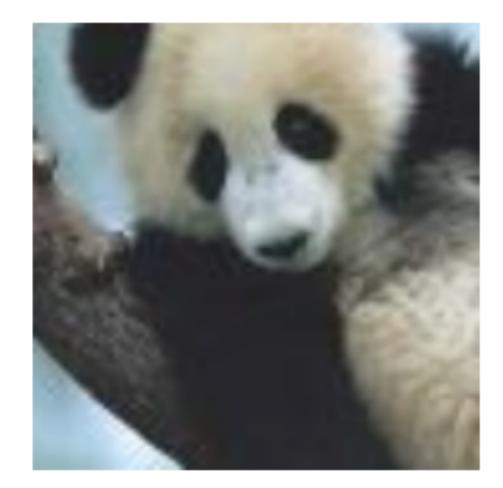




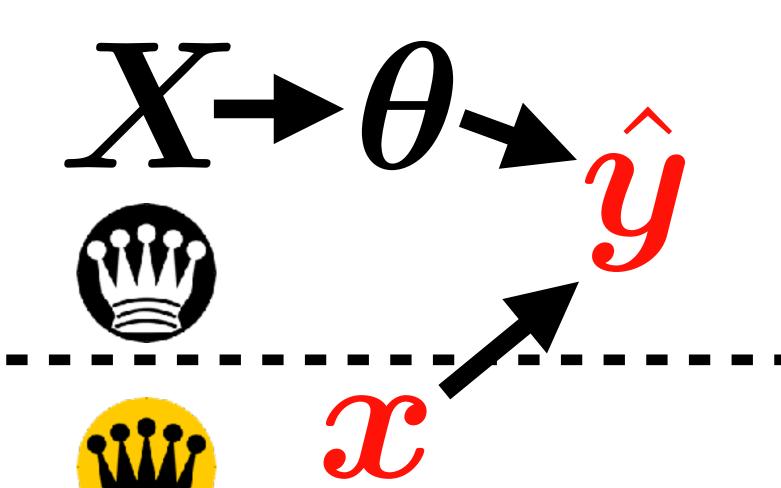
ML+neuroscience

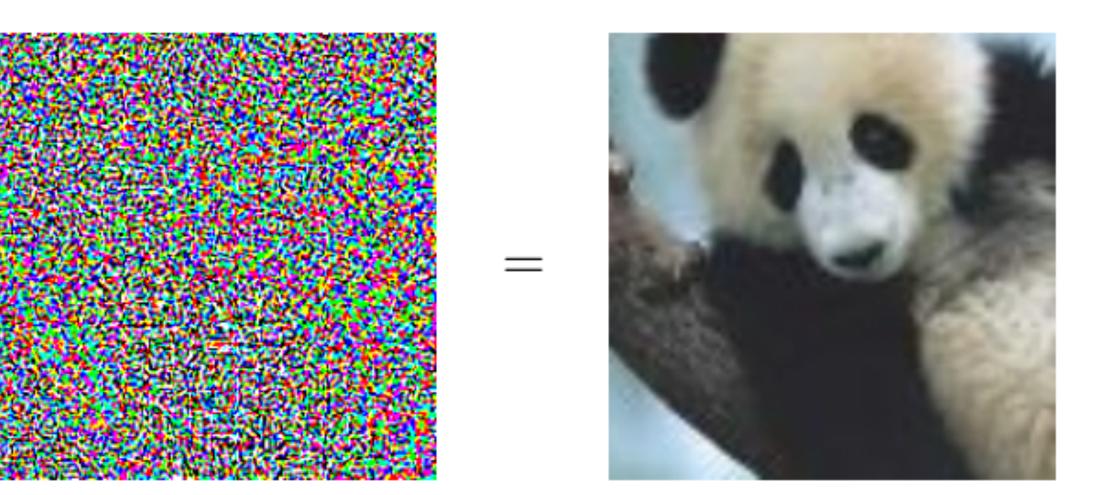
Accountability and Transparency Fairness

Adversarial Examples



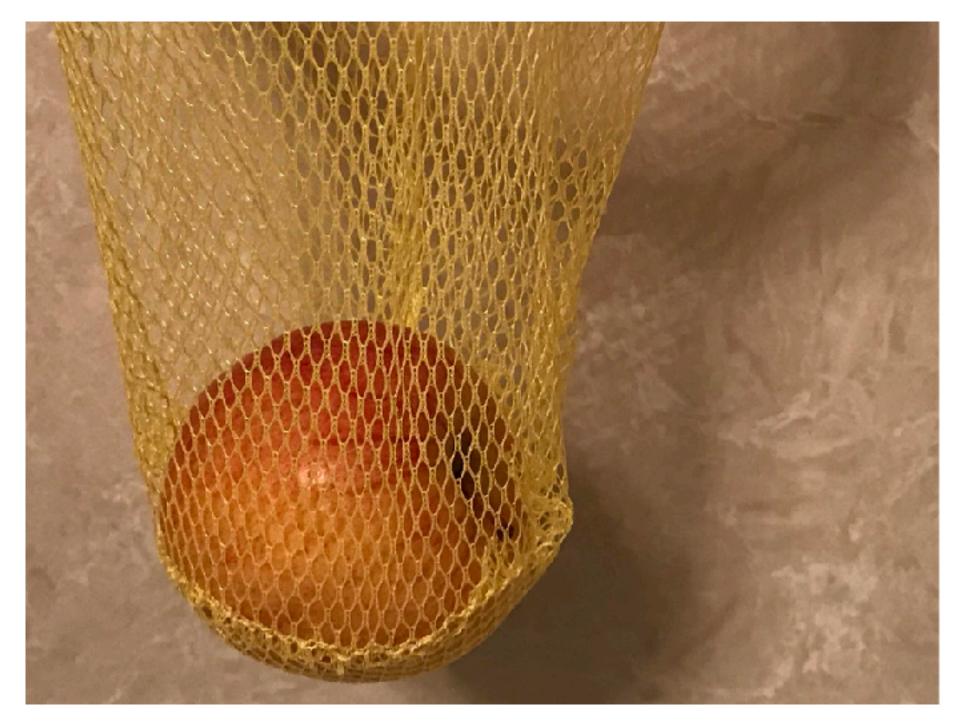
 $+.007 \times$





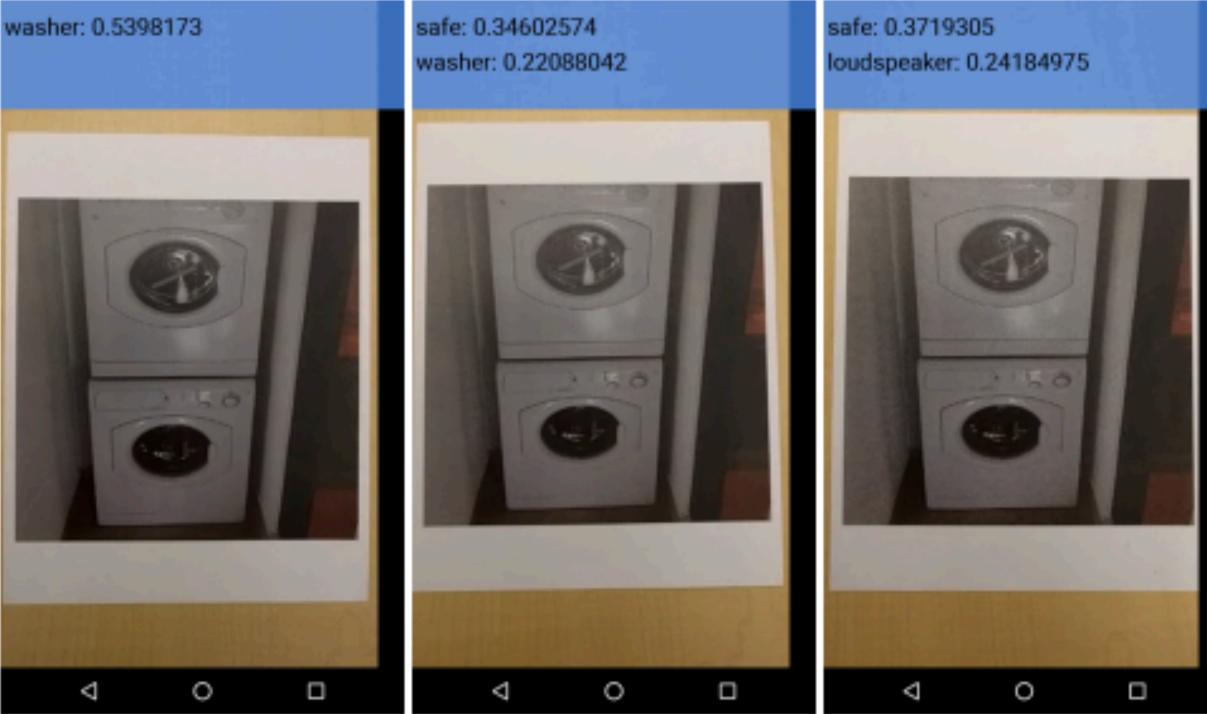
Also Adversarial Examples

(Eykholt et al, 2017)



(Goodfellow 2018)

Adversarial Examples in the Physical World



(a) Image from dataset

(b) Clean image

(c) Adv. image, $\epsilon = 4$ (d) Adv. image, $\epsilon = 8$

(Kurakin et al, 2016)

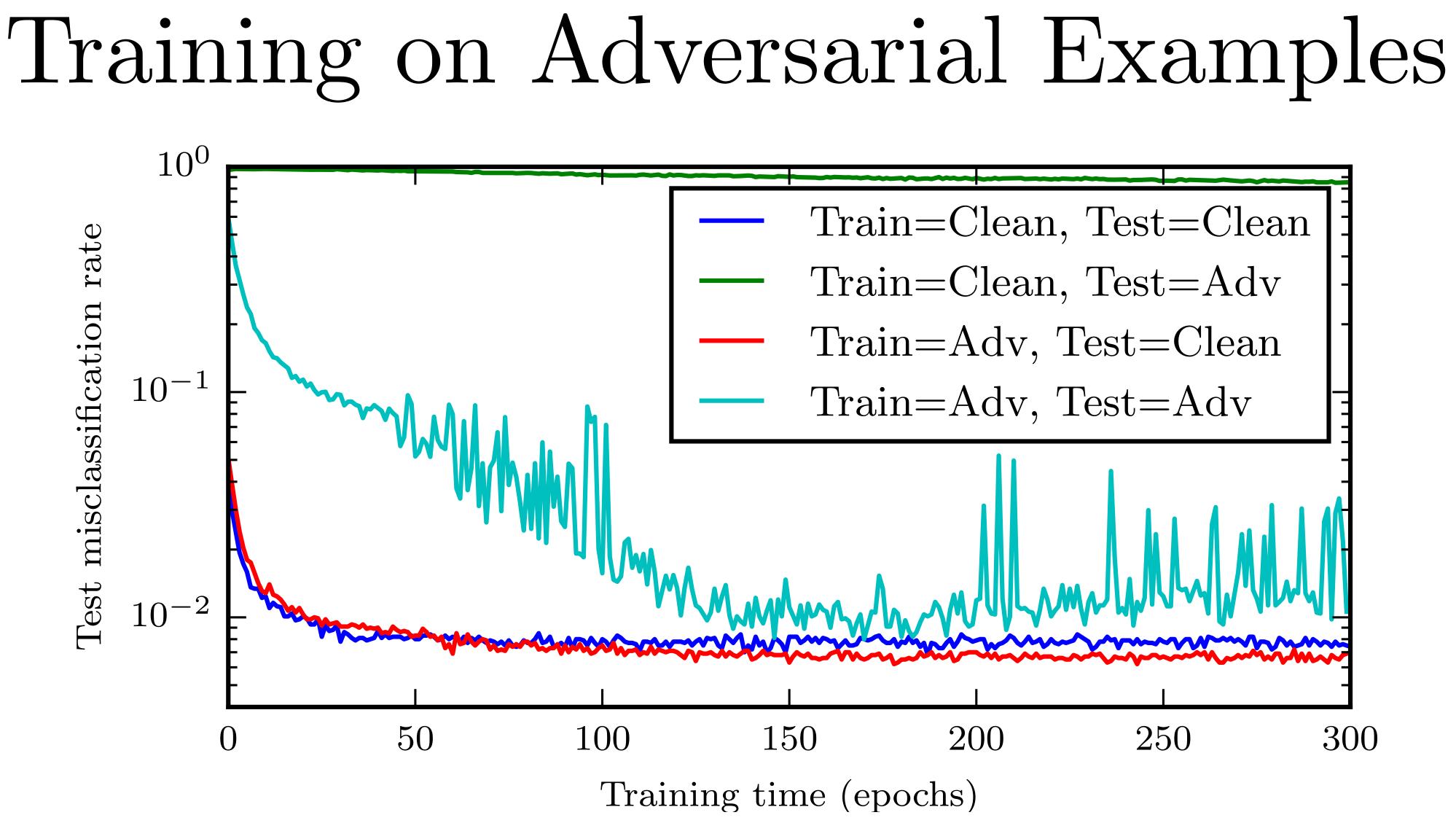
Adversarial Training as a Minimax Problem

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{x},y} \max_{\boldsymbol{\eta}} [J(\boldsymbol{x}, y, \eta)] = (J(\boldsymbol{x}, y, \eta))$$

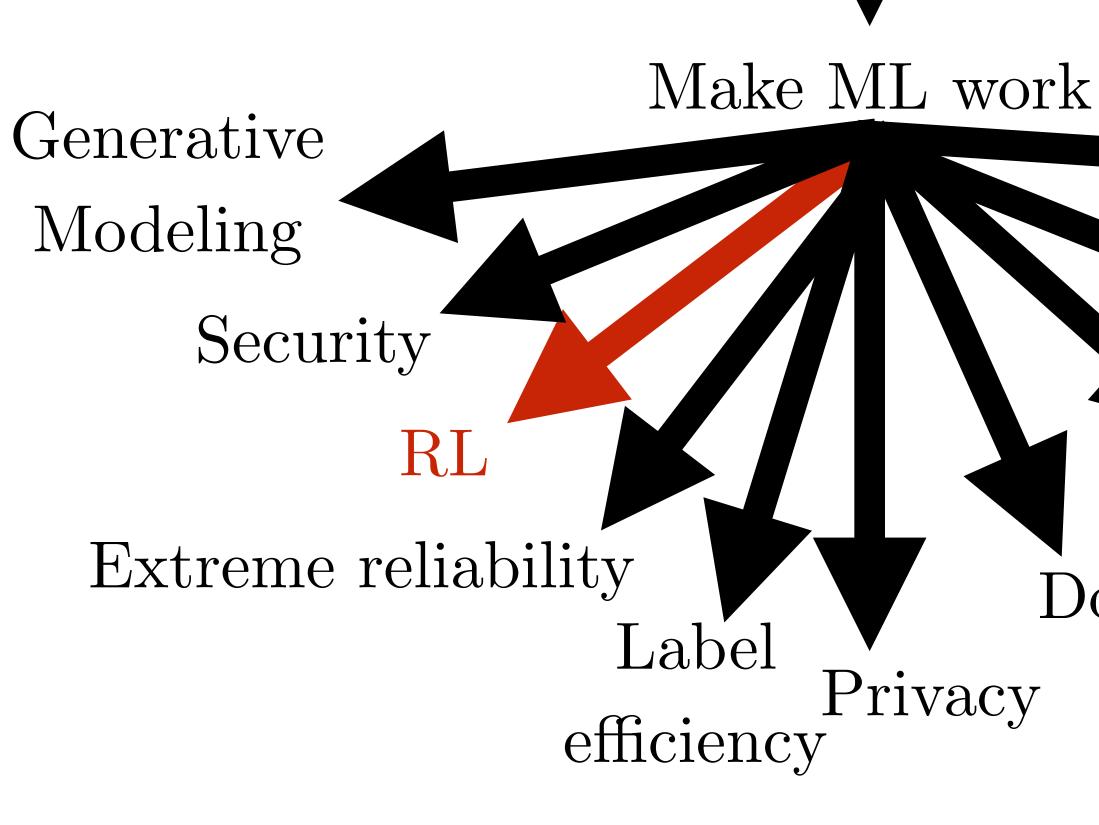
with the learning algorithm as the minimizing player and a fixed procedure (such as L-BFGS or the fast gradient sign method) as the maximizing player."

- "Adversarial training can be interpreted as a minimax game,
 - $\boldsymbol{\theta}$) + J($\boldsymbol{x} + \boldsymbol{\eta}, \boldsymbol{y}$)],

- Original implementation: <u>Goodfellow et al 2014</u>
- Explicit use of "minimax": Farley and Goodfellow, 2016



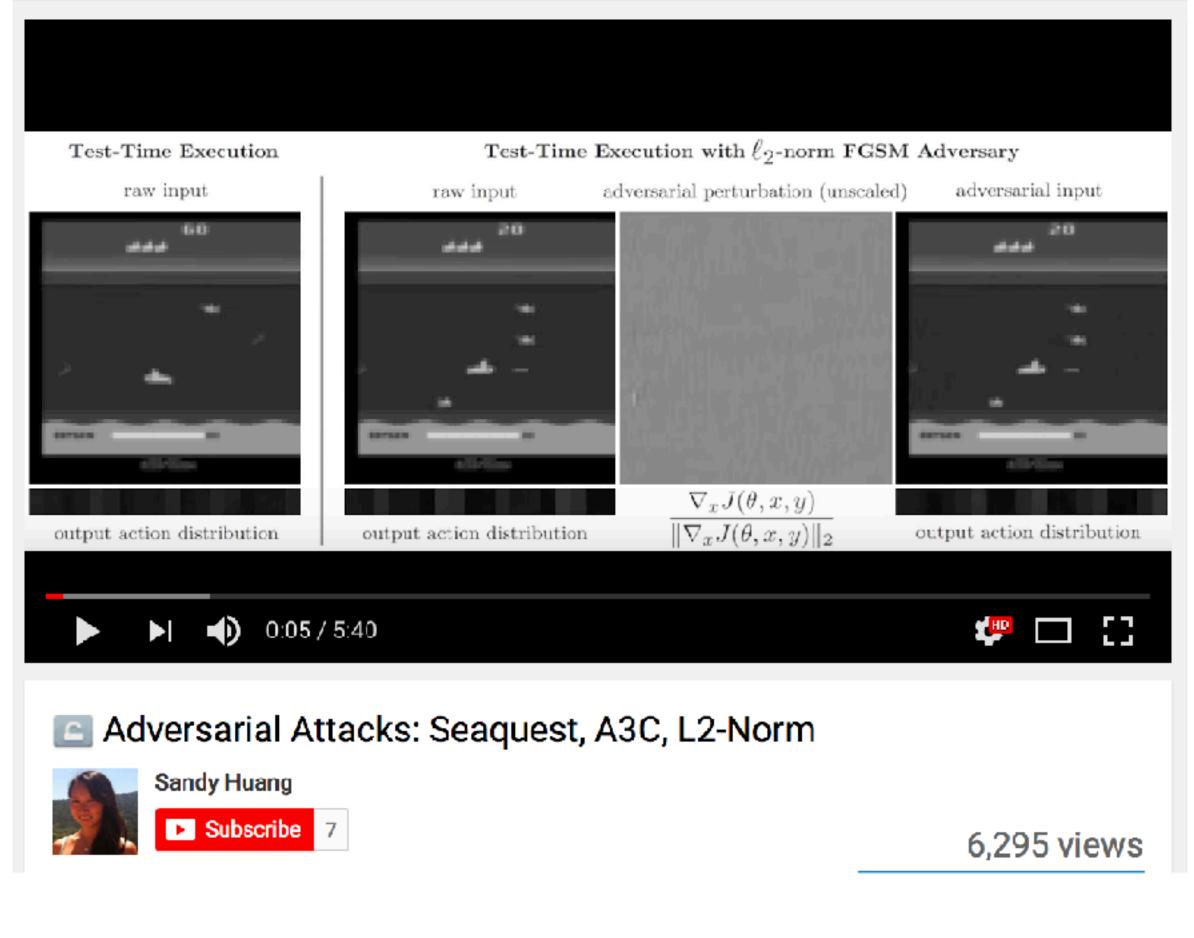
(CleverHans tutorial, using method of Goodfellow et al 2014)



ML+neuroscience

Accountability and Transparency Fairness

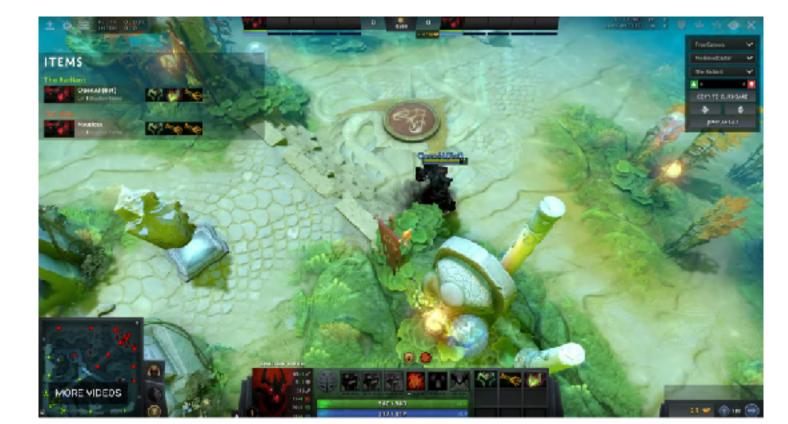
Adversarial Examples for RL



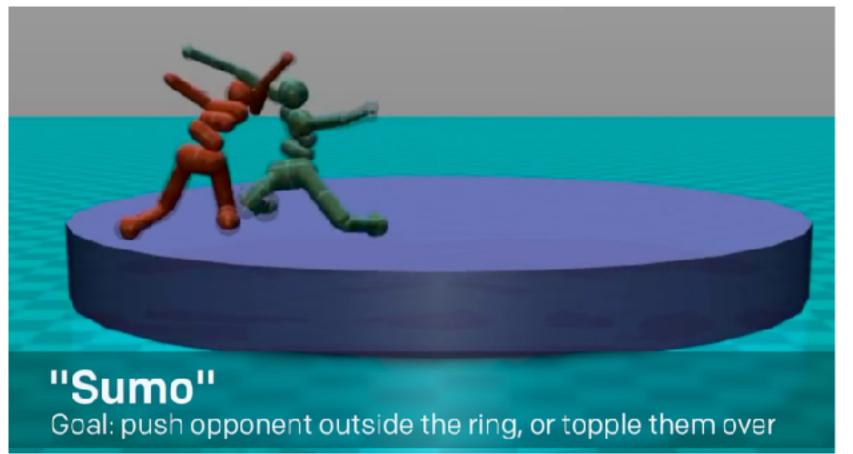
 $(\underline{\text{Huang et al.}}, 2017)$

Self-Play

1959: Arthur Samuel's checkers agent



(OpenAI, 2017)



(Bansal et al, 2017)

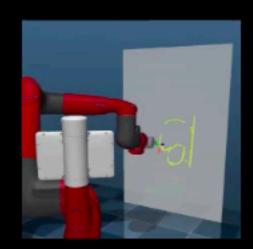
SPIRAL Synthesizing Programs for Images Using Reinforced Adversarial Learning

Input Program end = [(9, 12), (3, 16), (17, 26), (30, 26), (30, 26), (30, 26), (20, 22), (16, 14), (30, 21), ...], <mark>ctl</mark> = [(8, 11), (8, 24), (3, → 25), (10, 25), (18, 25), (23, 25), (17, 21), (17, 22), (18, 22), ...], pen = [0, 1, 1, 1, 1, 1, 0, Image 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

(Ganin et al, 2018)

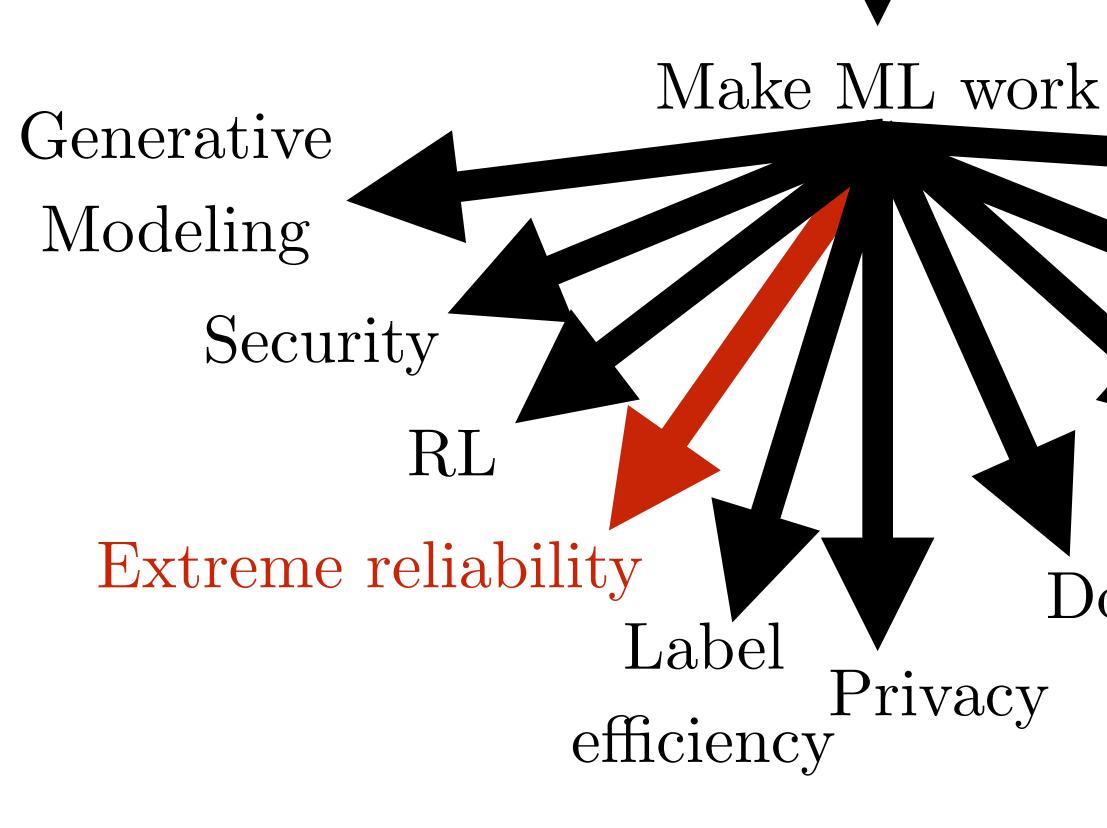
Interpreters

Simulated Paint



Simulated Arm

Real Arm



ML+neuroscience

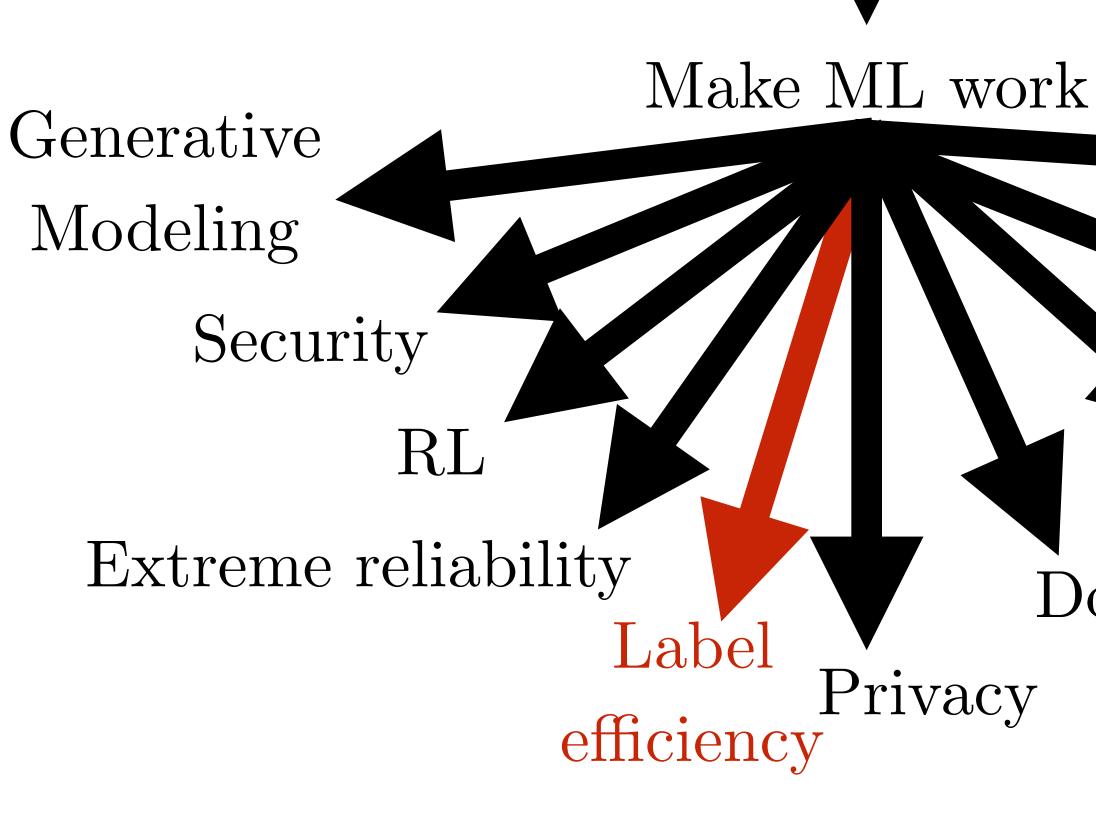
Accountability and Transparency Fairness

- We want extreme reliability for
 - Autonomous vehicles
 - Air traffic control
 - Surgery robots
 - Medical diagnosis, etc.

Extreme Reliability

• Adversarial machine learning research techniques can help with this

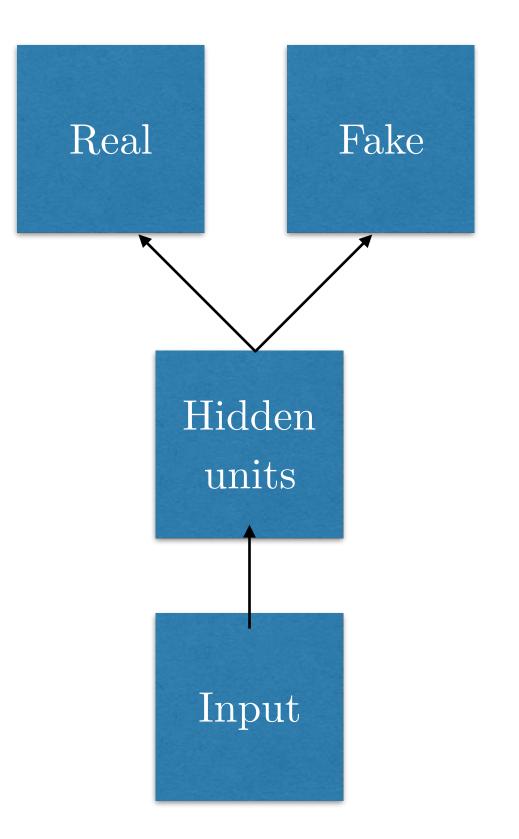
• Katz et al 2017: verification system, applied to air traffic control



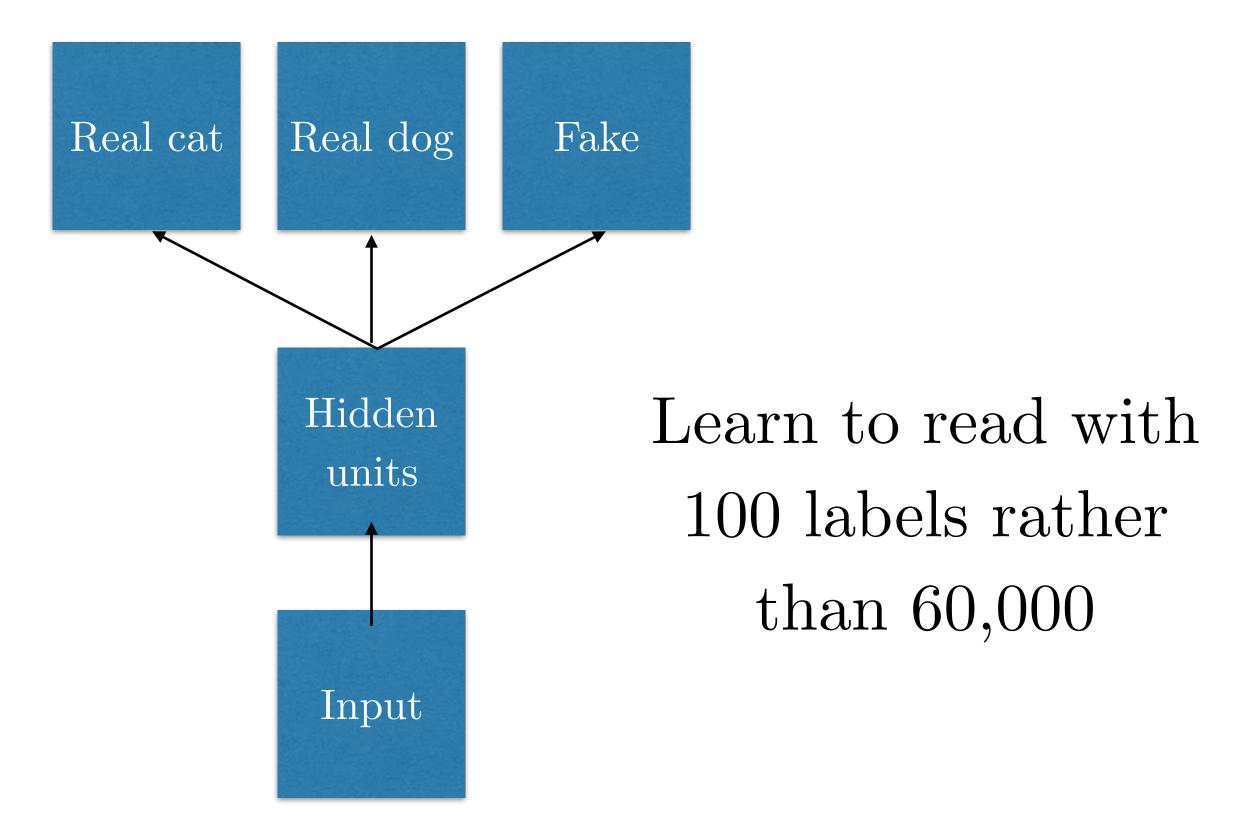
ML+neuroscience

Accountability and Transparency Fairness

Supervised Discriminator for Semi-Supervised Learning



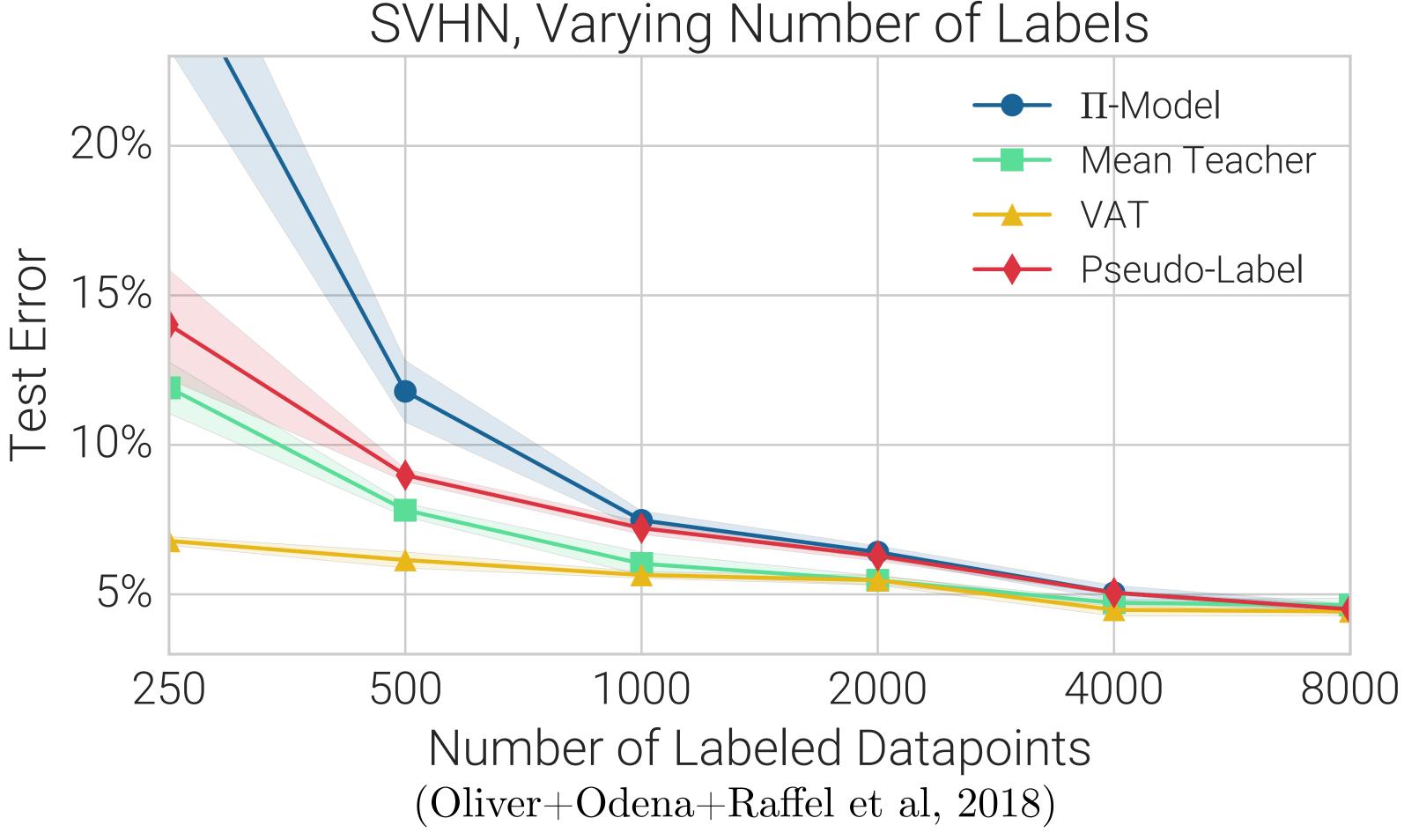
(Odena 2016, Salimans et al 2016)

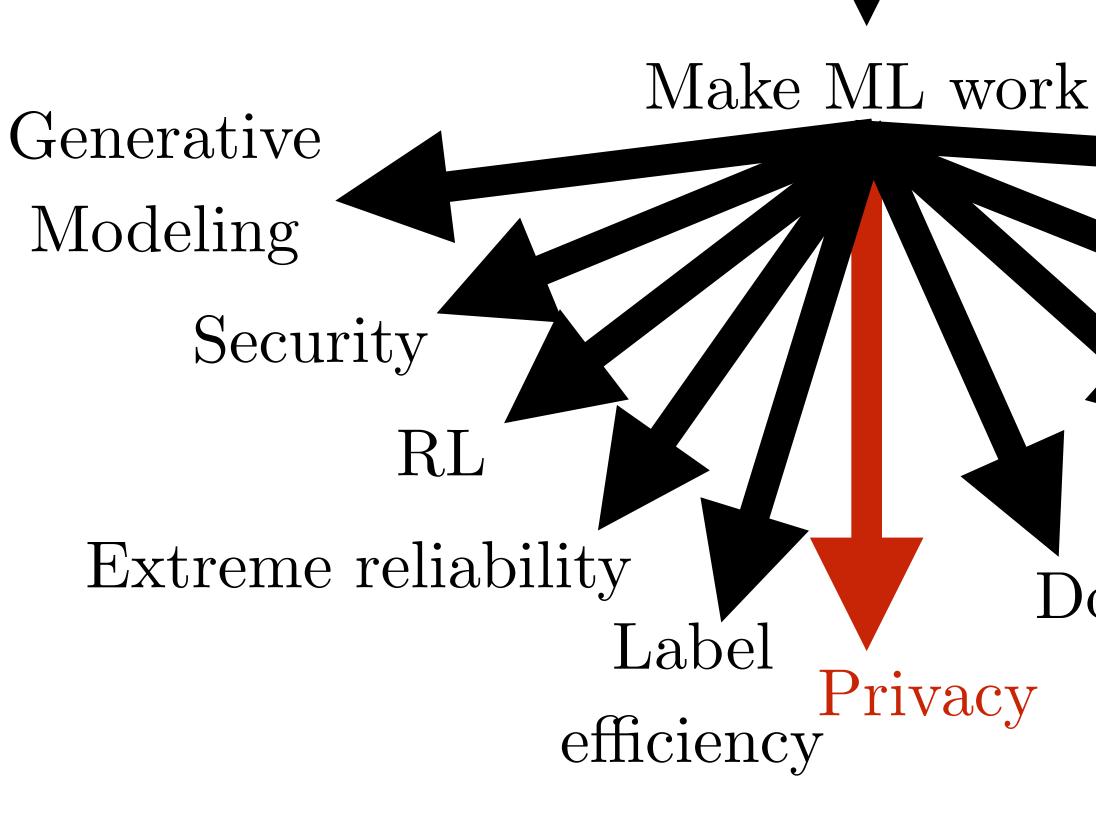


(Goodfellow 2018)

Virtual Adversarial Training Miyato et al 2015: regularize for robustness to adversarial perturbations of

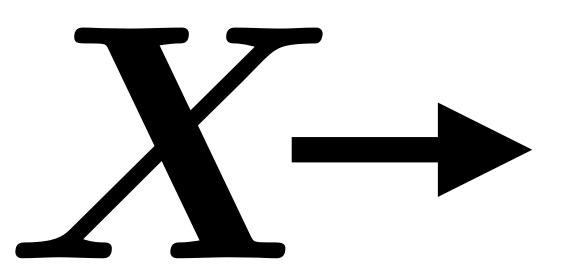
unlabeled data



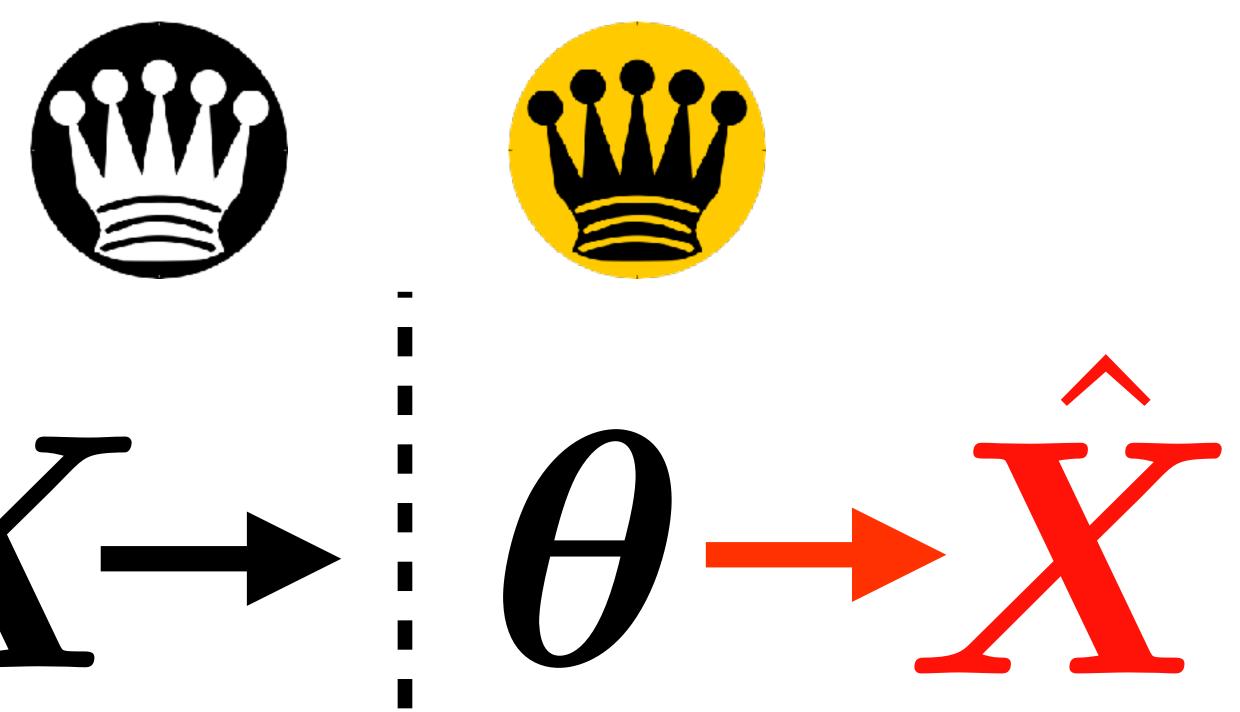


ML+neuroscience

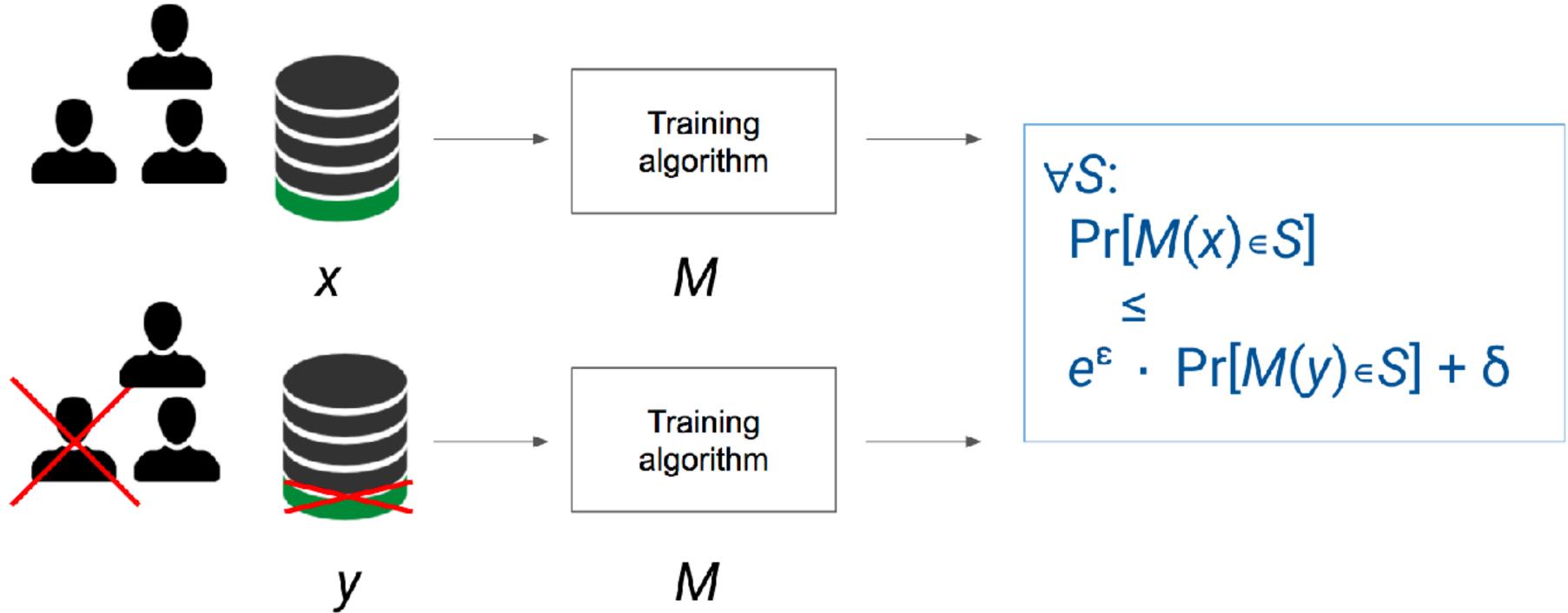
Accountability and Transparency Fairness



Privacy of training data

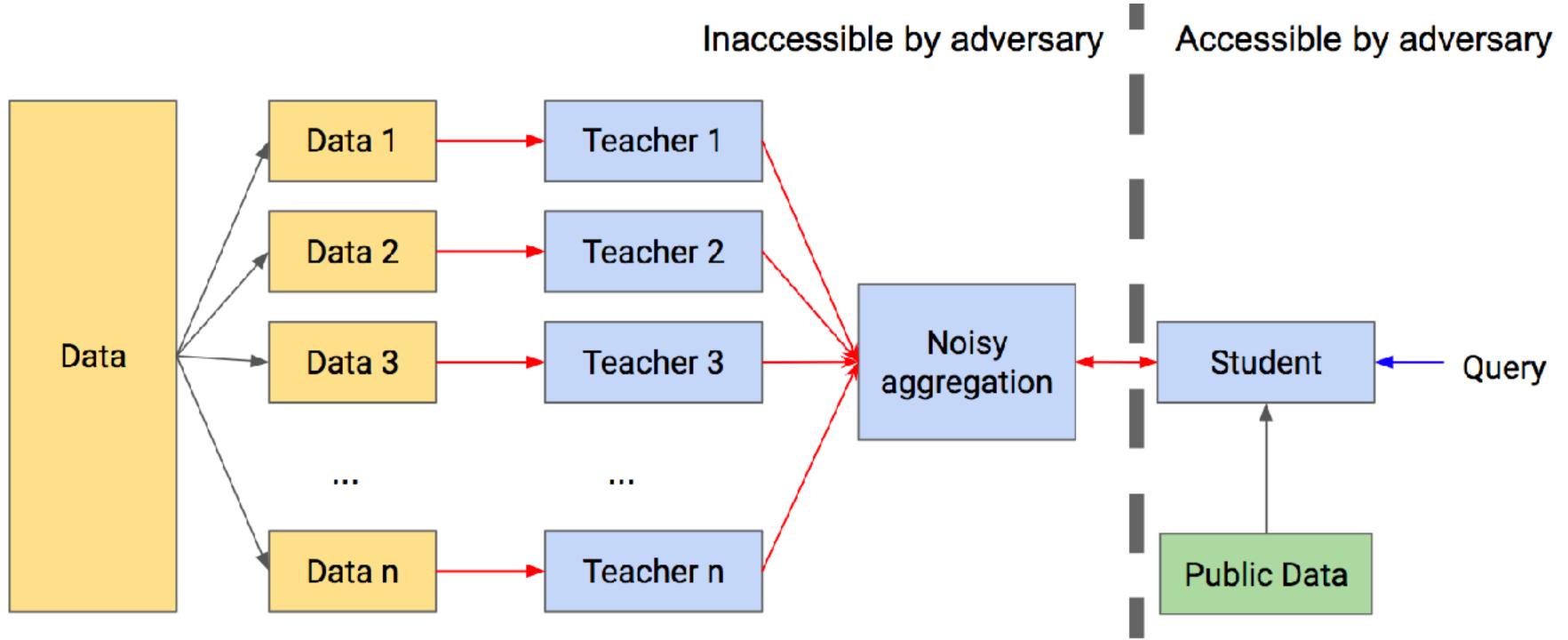


Defining (ε , δ)-Differential Privacy

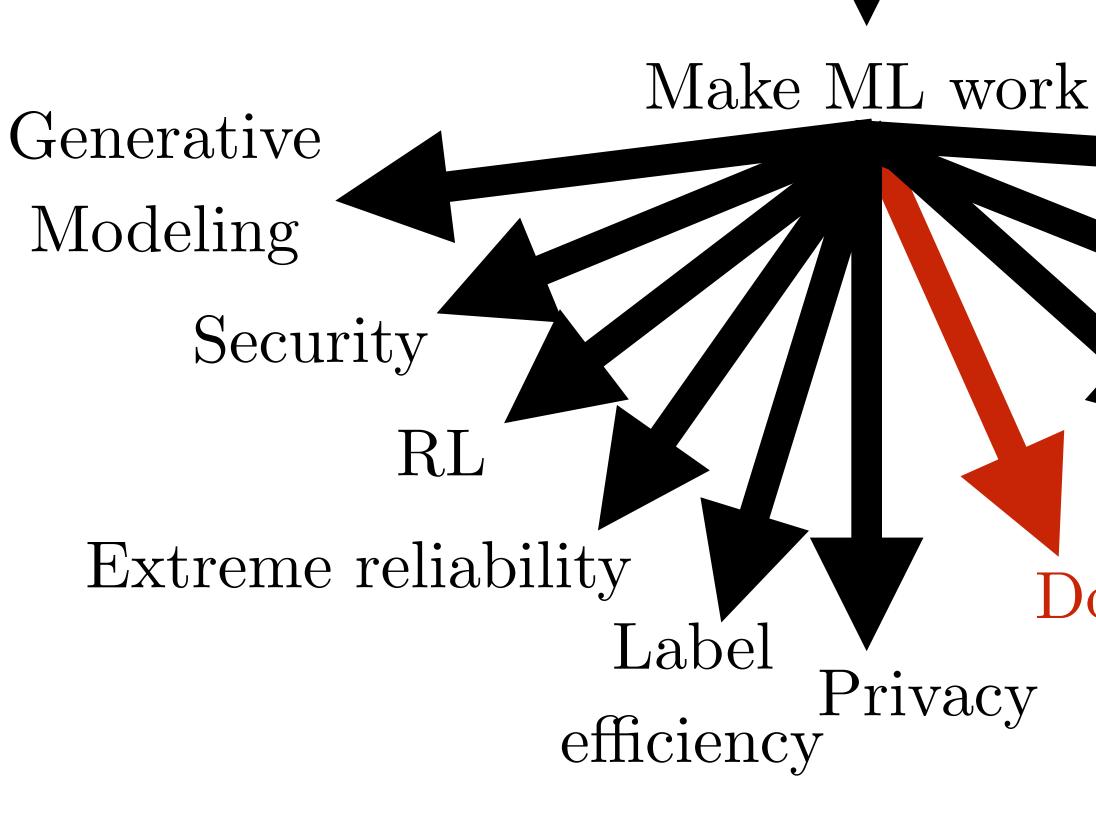


(Abadi 2017)

Private Aggregation of Teacher Ensembles



(Papernot et al 2016)



ML+neuroscience

Accountability and Transparency Fairness

• Domain Adversarial Networks (Ganin et al, 2015)

VIPER

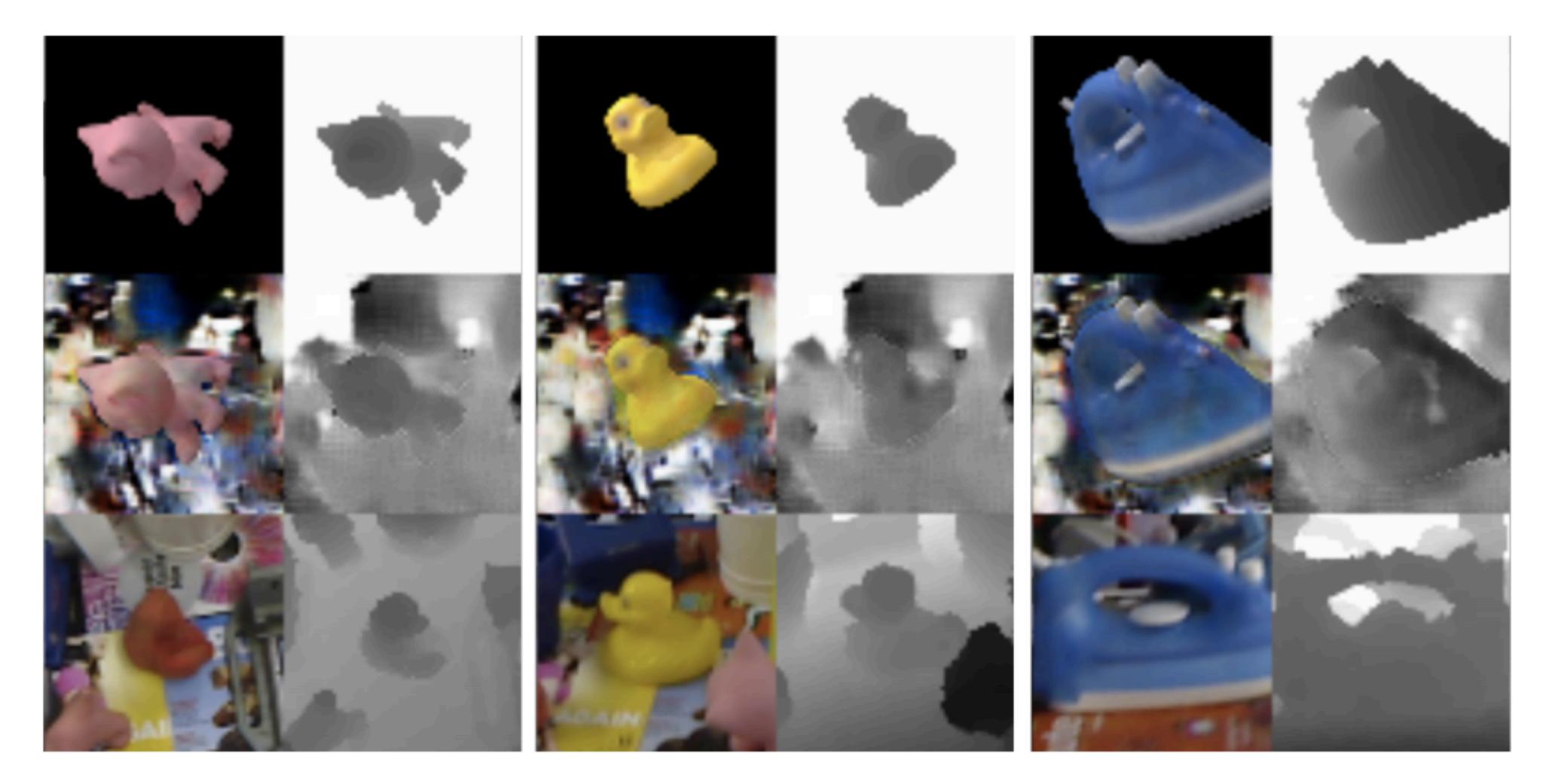
• Professor forcing (Lamb et al, 2016): Domain-Adversarial learning in RNN hidden state

Domain Adaptation

PRID

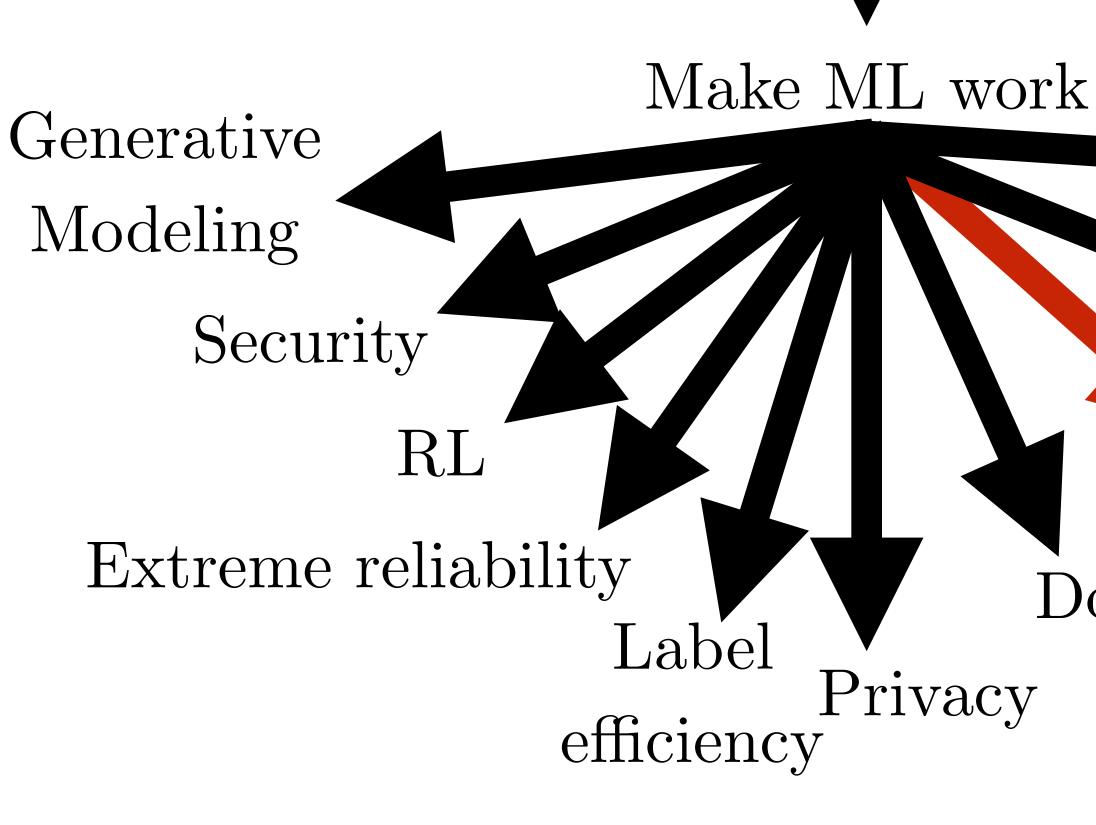
CUHK

GANs for domain adaptation



(Bousmalis et al., 2016)





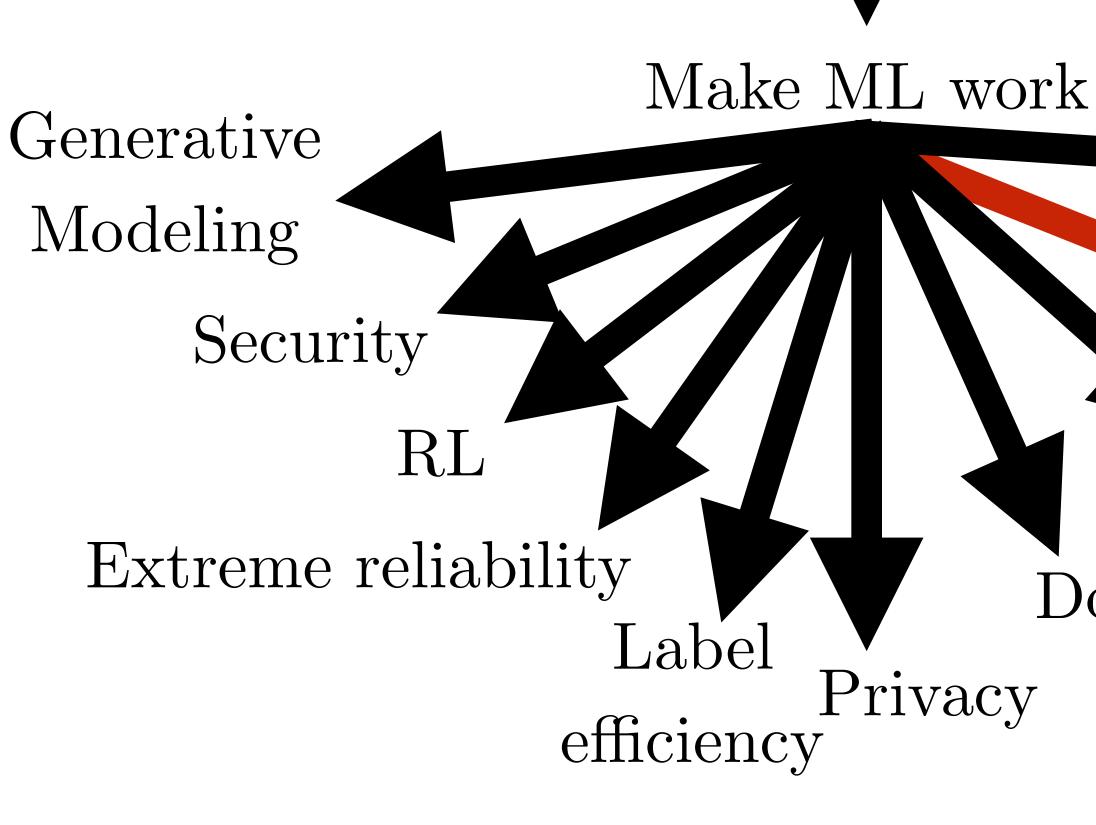
ML+neuroscience

Accountability and Transparency Fairness

Adversarially Learned Fair Representations

- Edwards and Storkey 2015
- Learn representations that are useful for classification
- make S impossible to recover
- Final decision does not depend on S

• An adversary tries to recover a sensitive variable Sfrom the representation. Primary learner tries to



ML+neuroscience

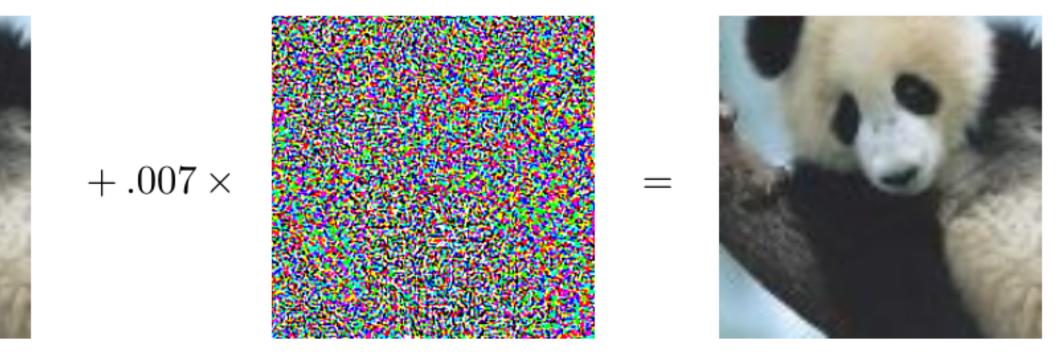
Accountability and Transparency Fairness

How do machine learning models work?

(c) Grad-CAM 'Cat'

Interpretability literature: our analysis tools show that deep nets work about how you would expect them to.

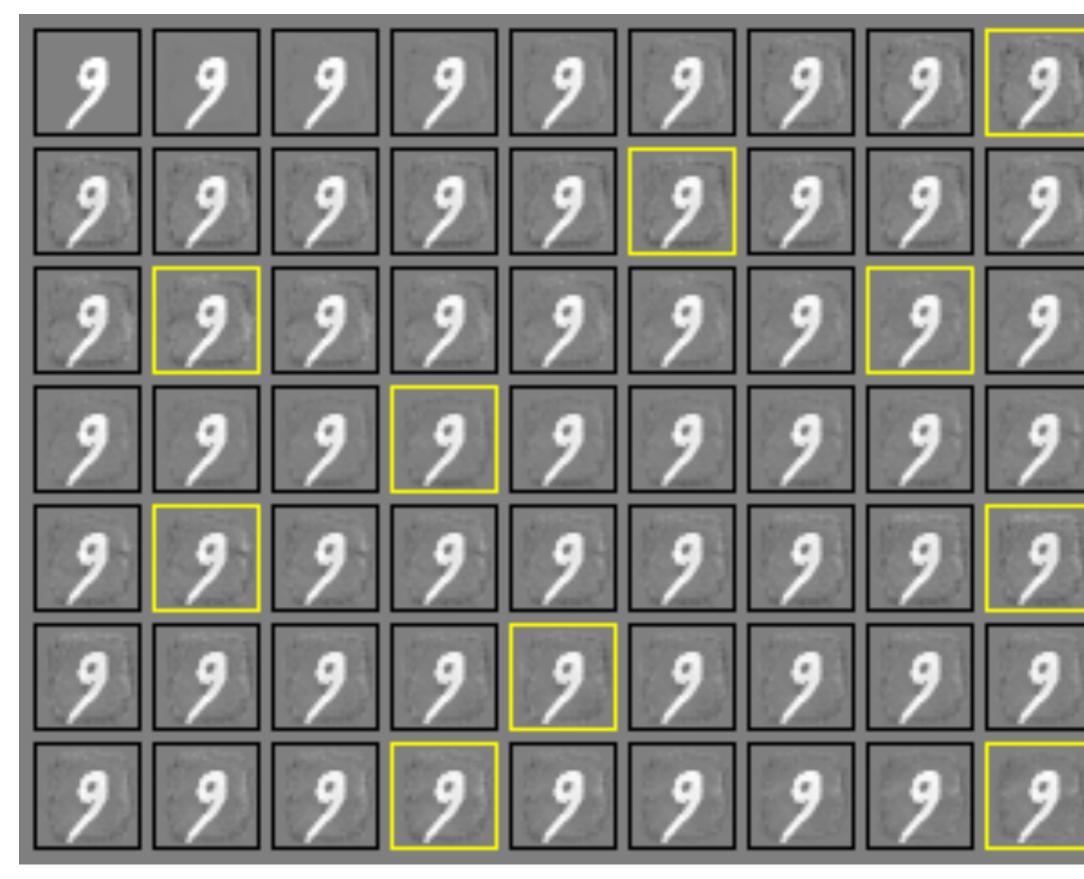
(i) Grad-CAM 'Dog' (Selvaraju et al, 2016)



(Goodfellow et al, 2014)

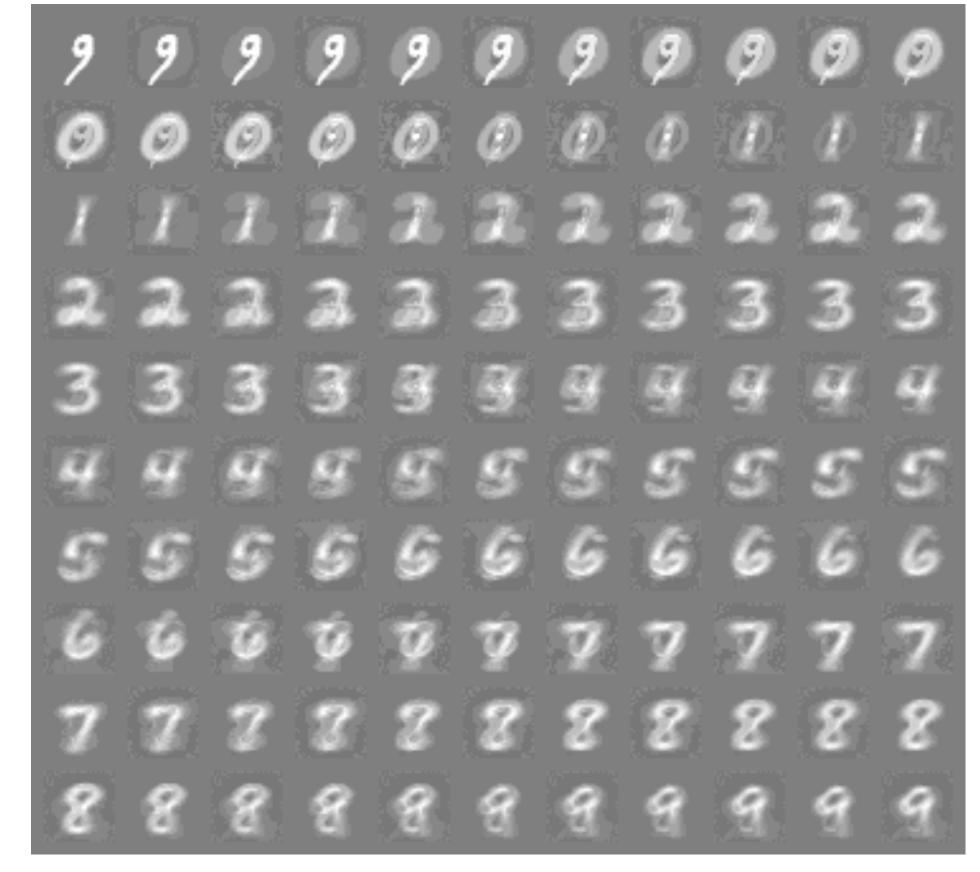
Adversarial ML literature: ML models are very easy to fool and even linear models work in counter-intuitive ways.

Robust models are more interpretable

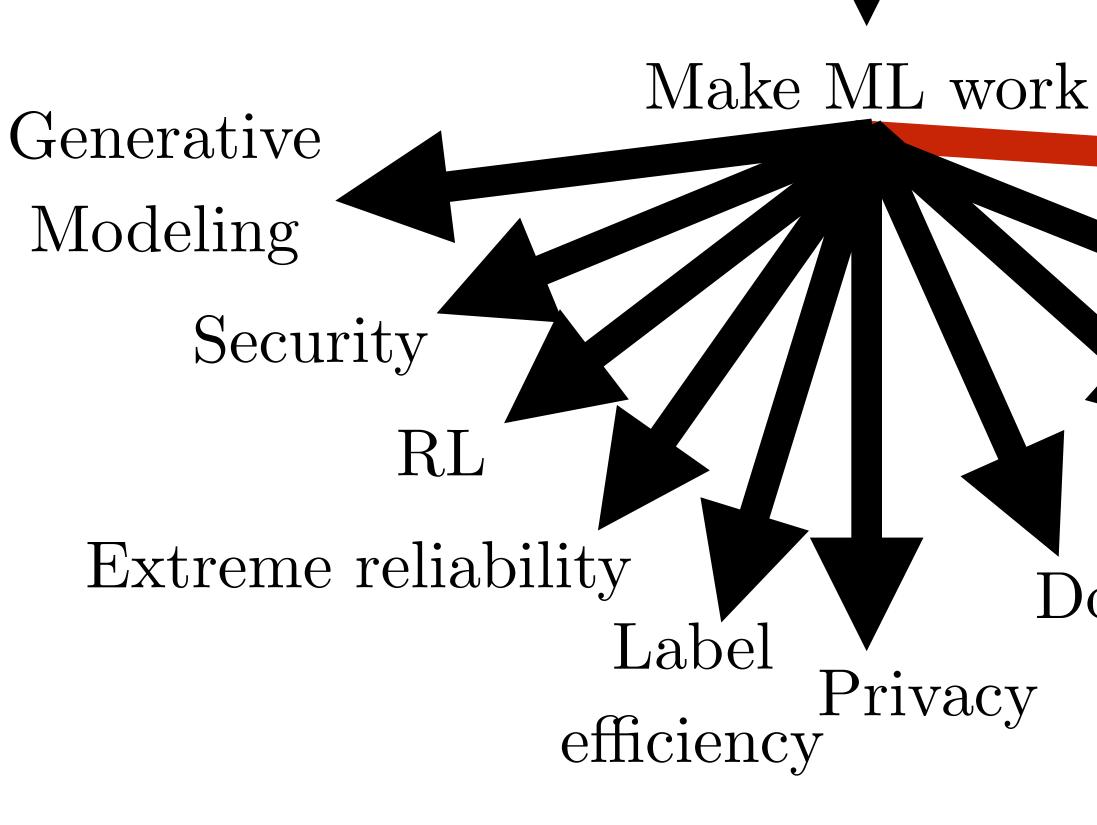


Relatively vulnerable model

(Goodfellow 2015)



Relatively robust model



ML+neuroscience

Accountability and Transparency Fairness

Adversarial Examples that Fool both Human and Computer Vision

Gamaleldin et al 2018

Questions

