Adversarial Machine Learning Ian Goodfellow, Senior Staff Research Scientist AAAT 2019-01-30

Google Al

Most Traditional Machine Learning: Optimization

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

Generative Modeling: Sample Generation

Training Data (CelebA)

Sample Generator (Karras et al, 2017)

(Goodfellow et al., 2014)

4.5 years of progress on faces

2 Years of Progress on ImageNet

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

Brock et al 2018

(Goodfellow 2018)

Unsupervised Image-to-Image Translation

Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)

Video-to-Video

Pose-to-Body Results

Everybody Dance Now

Personalized GANufacturing

(Hwang et al 2018)

Self-Attention

(Zhang et al., 2018)

Use layers from Wang et al 2018

(Fake)

(Brock et al, 2018)BigGAN Large scale TPU implementation

Recent Advances

Style-based generators (Karras et al, 2018)

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

Adversarial Examples

$+.007 \times$

58% panda

99% gibbon

Also Adversarial Examples

(Eykholt et al, 2017)

(Goodfellow 2018)

Adversarial Examples in the Physical World

(a) Image from dataset

(b) Clean image

(c) Adv. image, $\epsilon = 4$ (d) Adv. image, $\epsilon = 8$

(Kurakin et al, 2016)

Adversarial Training as a Minimax Problem

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{x},y} \max_{\boldsymbol{\eta}} [J(\boldsymbol{x}, y, \eta)] = (J(\boldsymbol{x}, y, \eta))$$

with the learning algorithm as the minimizing player and a fixed procedure (such as L-BFGS or the fast gradient sign method) as the maximizing player."

- "Adversarial training can be interpreted as a minimax game,
 - $\boldsymbol{\theta}$) + J($\boldsymbol{x} + \boldsymbol{\eta}, \boldsymbol{y}$)],

- Original implementation: <u>Goodfellow et al 2014</u>
- Explicit use of "minimax": Farley and Goodfellow, 2016

(CleverHans tutorial, using method of Goodfellow et al 2014)

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

Model-Based Optimization

Make new inventions by finding input that maximizes model's predicted performance

Designing DNA to optimize protein function

(Gupta and Zou, 2018)

Make ML work Generative modeling Security Model-based optimization RL

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

Adversarial Examples for RL

 $(\underline{\text{Huang et al.}}, 2017)$

Self-Play

1959: Arthur Samuel's checkers agent

(OpenAI, 2017)

Goal: push opponent outside the ring, or topple them over

(Bansal et al, 2017)

SPIRAL Synthesizing Programs for Images Using Reinforced Adversarial Learning

Input Program end = [(9, 12), (3, 16), (17, 26), (30, 26), (30, 26), (30, 26), (20, 22), (16, 14), (30, 21), ...], <mark>ctl</mark> = [(8, 11), (8, 24), (3, → 25), (10, 25), (18, 25), (23, 25), (17, 21), (17, 22), (18, 22), ...], pen = [0, 1, 1, 1, 1, 1, 0, Image 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

(Ganin et al, 2018)

Interpreters

Simulated Paint

Simulated Arm

Real Arm

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

- We want extreme reliability for
 - Autonomous vehicles
 - Air traffic control
 - Surgery robots
 - Medical diagnosis, etc.

Extreme Reliability

• Adversarial machine learning research techniques can help with this

• Katz et al 2017: verification system, applied to air traffic control

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

Supervised Discriminator for Semi-Supervised Learning

(Odena 2016, Salimans et al 2016)

(Goodfellow 2019)

Virtual Adversarial Training Miyato et al 2015: regularize for robustness to adversarial perturbations of

unlabeled data

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

• Domain Adversarial Networks (Ganin et al, 2015)

VIPER

• Professor forcing (Lamb et al, 2016): Domain-Adversarial learning in RNN hidden state

Domain Adaptation

PRID

CUHK

GANs for simulated training data Unlabeled Real Images

Synthetic

Refined

(Shrivastava et al., 2016)

GraspGAN

(Bousmalis et al. 2017)

Grasp Success in the Real World

Number of Real-World Samples Used for Training

(Bousmalis et al, 2017)

G

Randomized Simulation

Real World

(James et al, 2018)

Sim-to-real via sim-to-sim

action

Agent

Agent

action

Canonical Simulation

> Learn to grasp without real data!

Canonical Simulation

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

(Goodfellow 2019)

Adversarially Learned Fair Representations

- Edwards and Storkey 2015
- Learn representations that are useful for classification
- make S impossible to recover
- Final decision does not depend on S

• An adversary tries to recover a sensitive variable Sfrom the representation. Primary learner tries to

How do machine learning models work?

(c) Grad-CAM 'Cat'

Interpretability literature: our analysis tools show that deep nets work about how you would expect them to.

(i) Grad-CAM 'Dog' (Selvaraju et al, 2016)

(Goodfellow et al, 2014)

Adversarial ML literature: ML models are very easy to fool and even linear models work in counter-intuitive ways.

Robust models are more interpretable

Relatively vulnerable model

(Goodfellow 2015)

Relatively robust model

Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

Adversarial examples that affect both computer and time-limited human vision

25% snake

67% snake

Elsayed et al 2018

Questions

