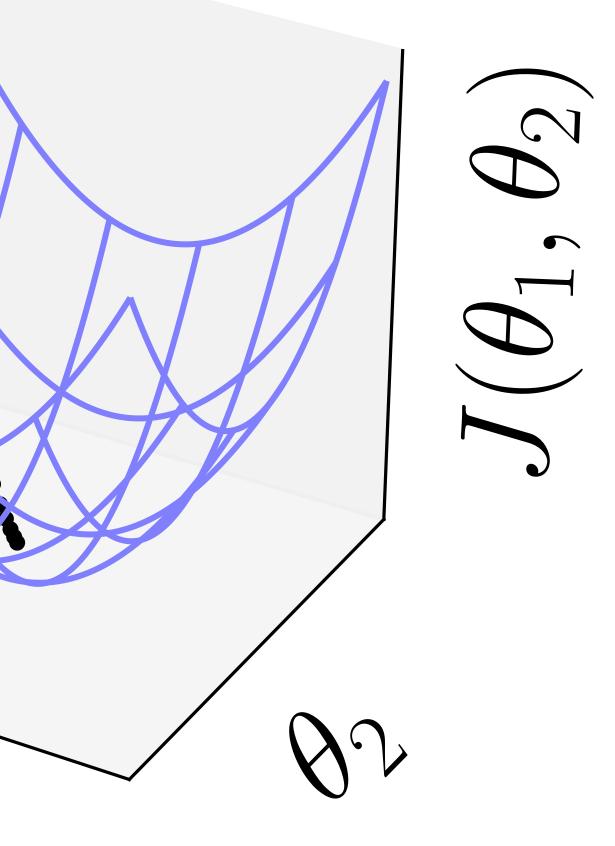
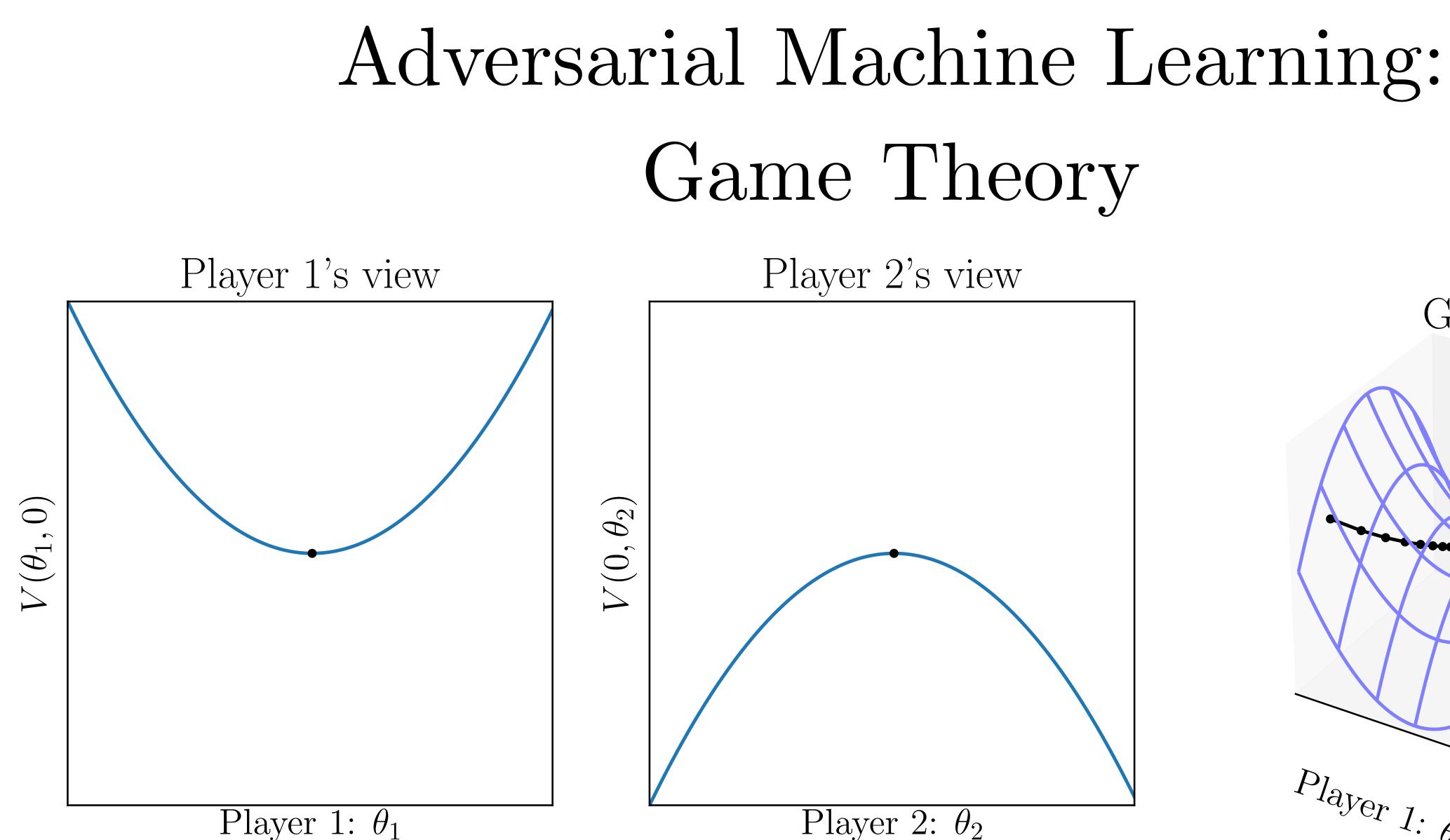
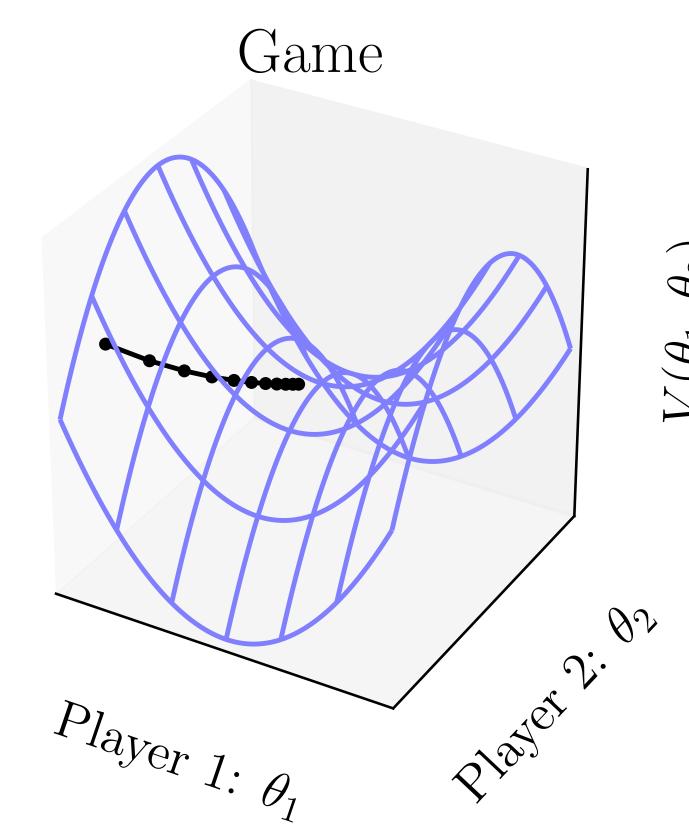
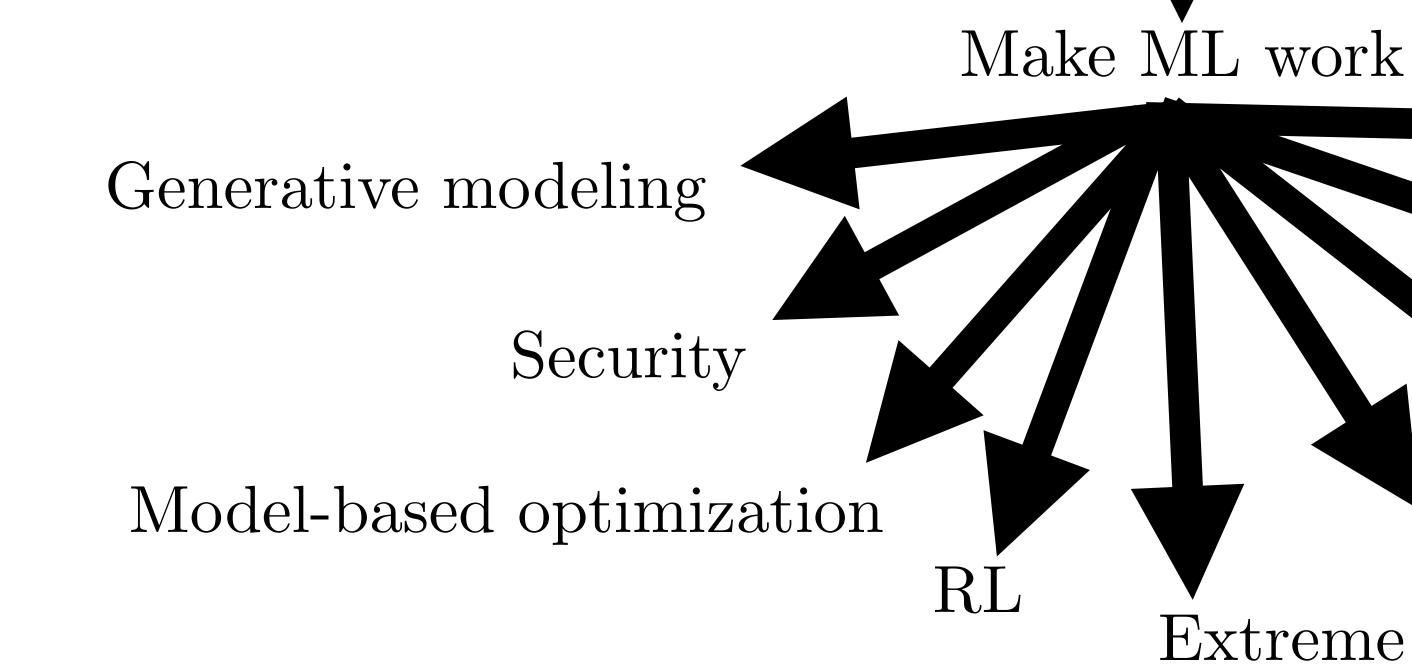
Adversarial Machine Learning Ian Goodfellow ICLR 2019-05-07

Most Traditional Machine Learning: Optimization



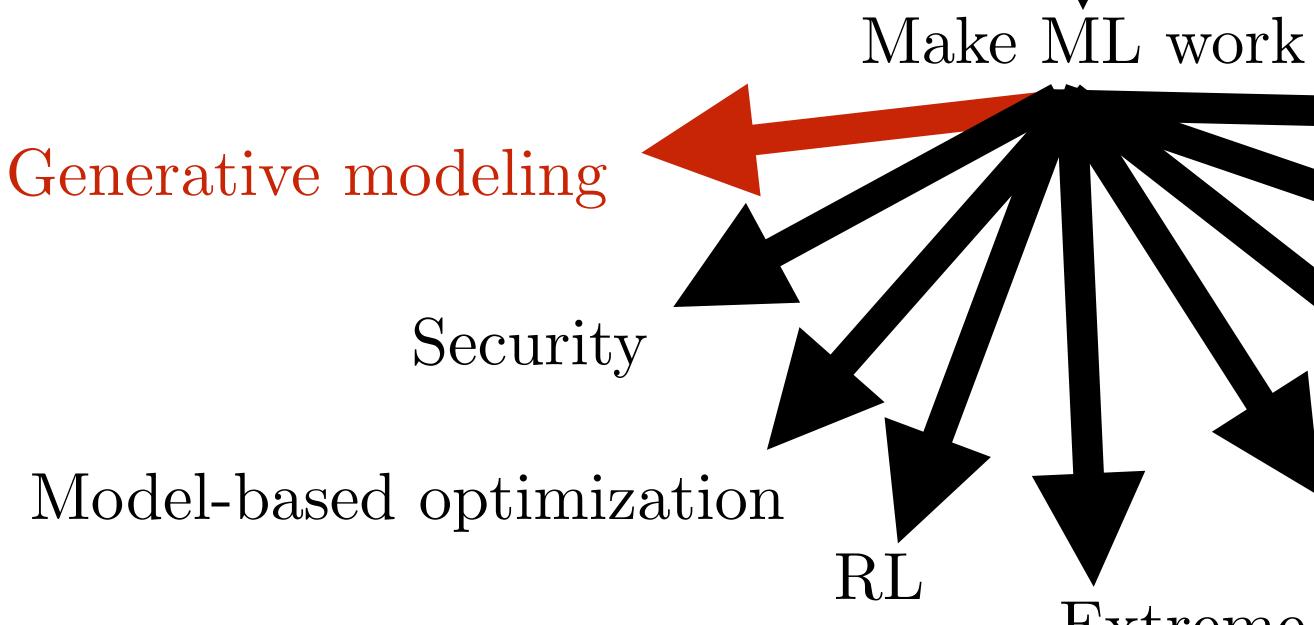






Neuroscience

Fairness, accountability and transparency Domain adaptation

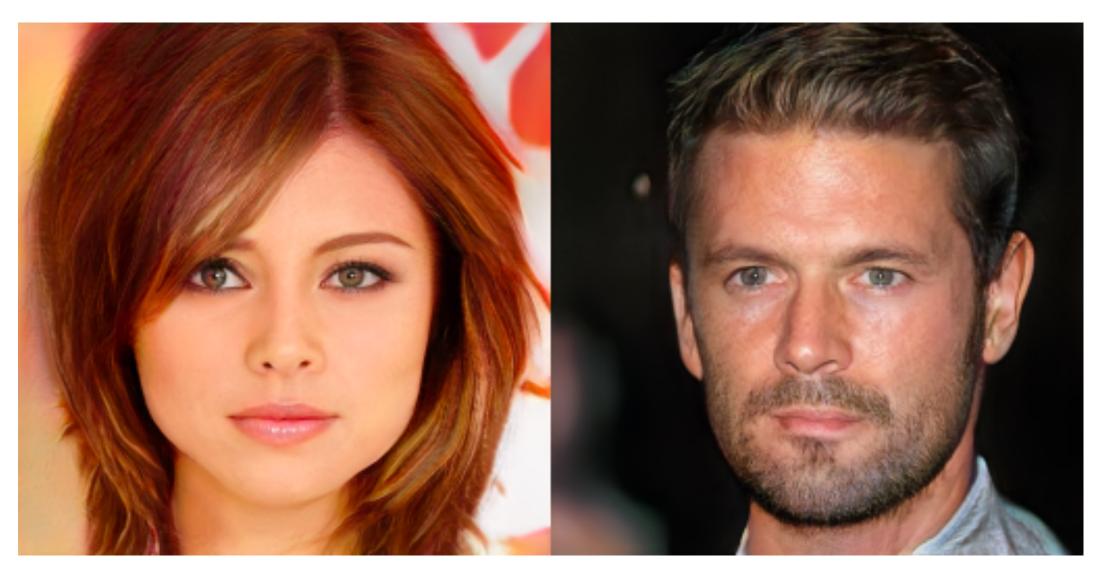


Neuroscience

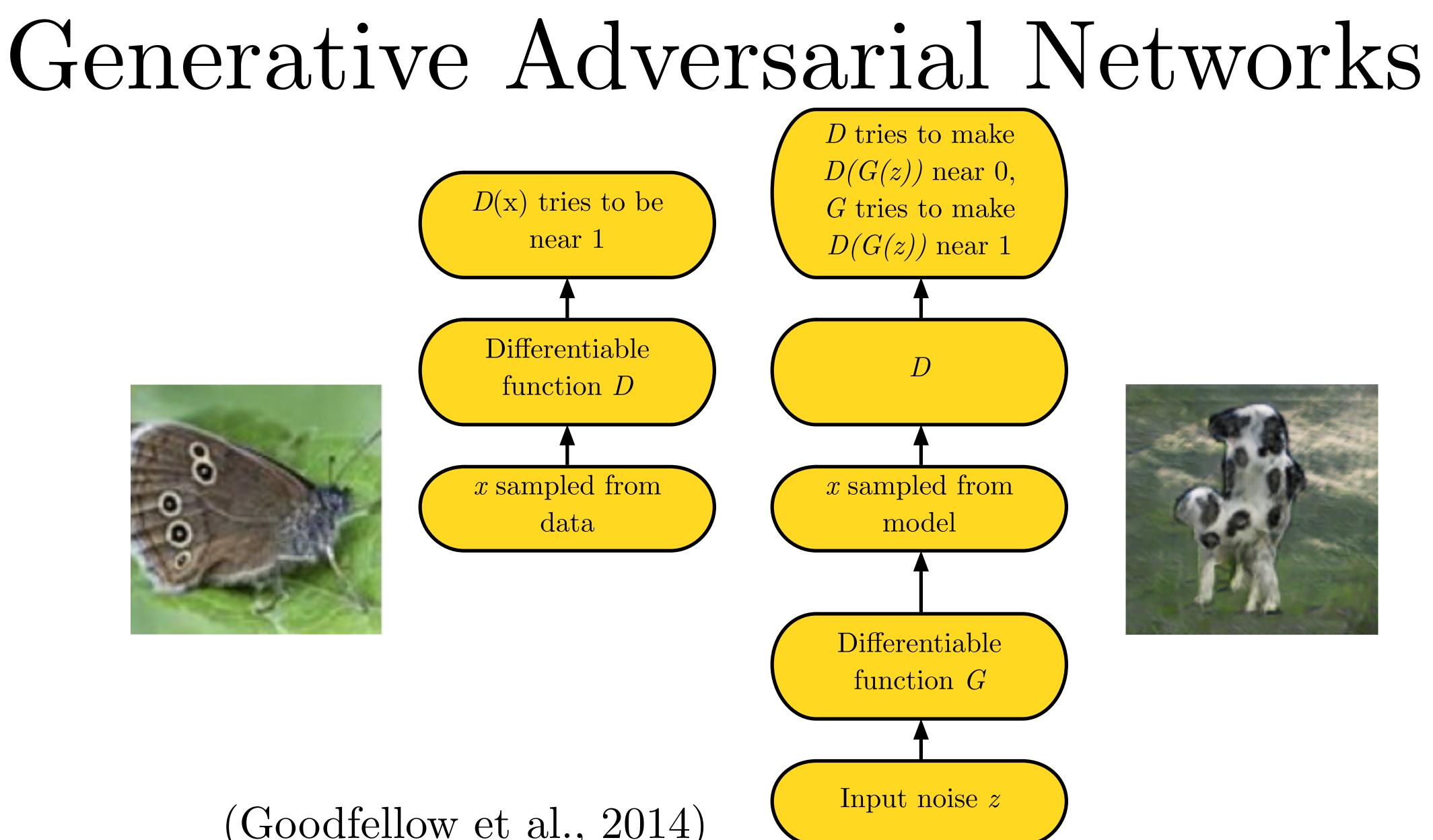
Fairness, accountability and transparency Domain adaptation

Generative Modeling: Sample Generation

Training Data (CelebA)

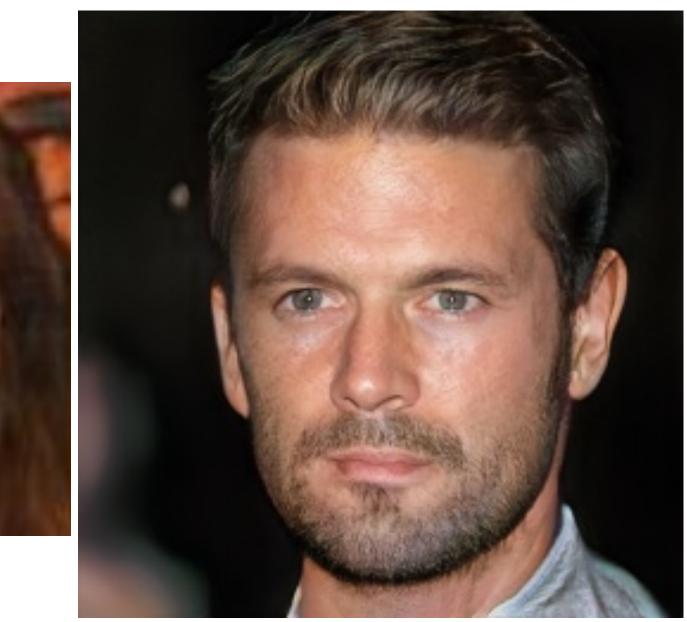


Sample Generator (Karras et al, 2017)



(Goodfellow et al., 2014)

4.5 years of progress on faces



2 Years of Progress on ImageNet

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

Brock et al 2018

(Goodfellow 2018)

Unsupervised Image-to-Image Translation

Day to night

(Liu et al., 2017)

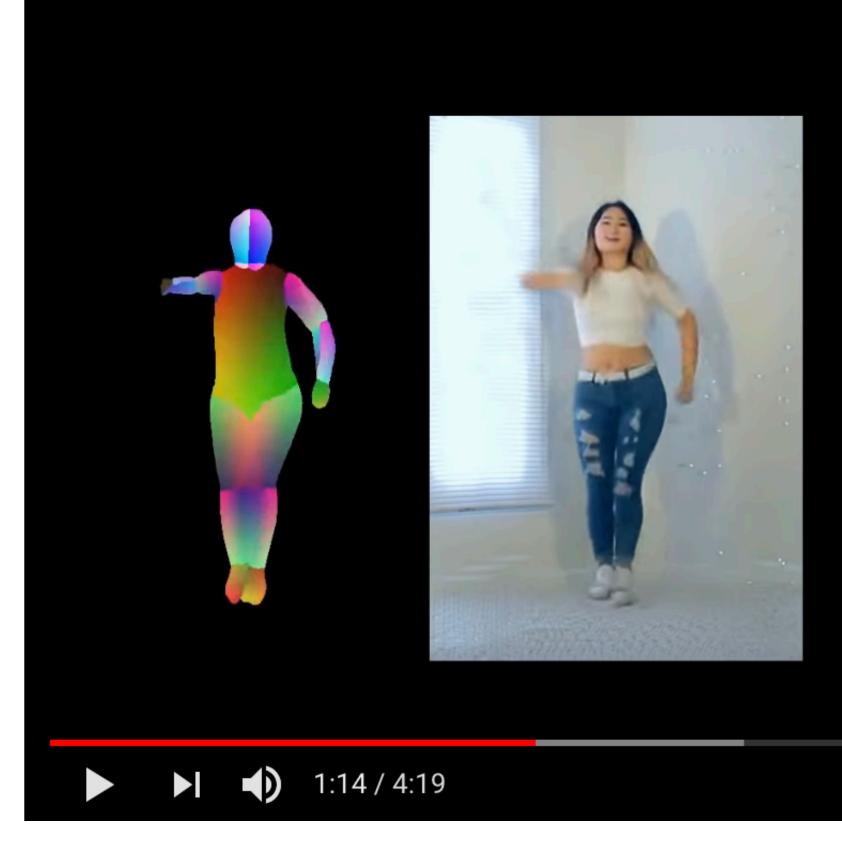
CycleGAN

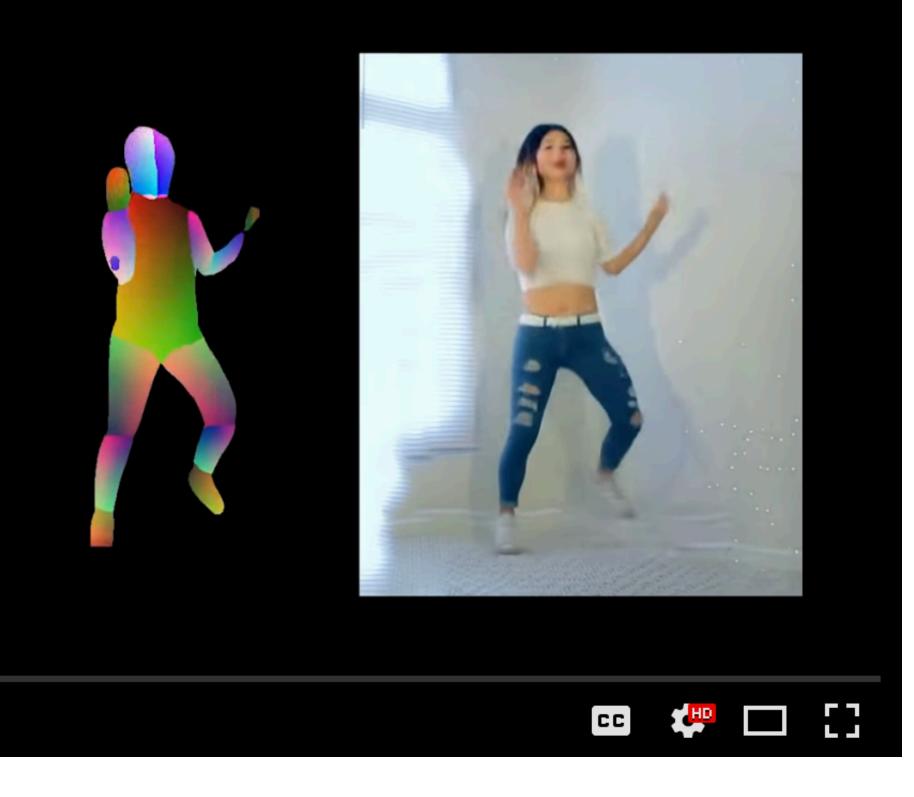


(Zhu et al., 2017)

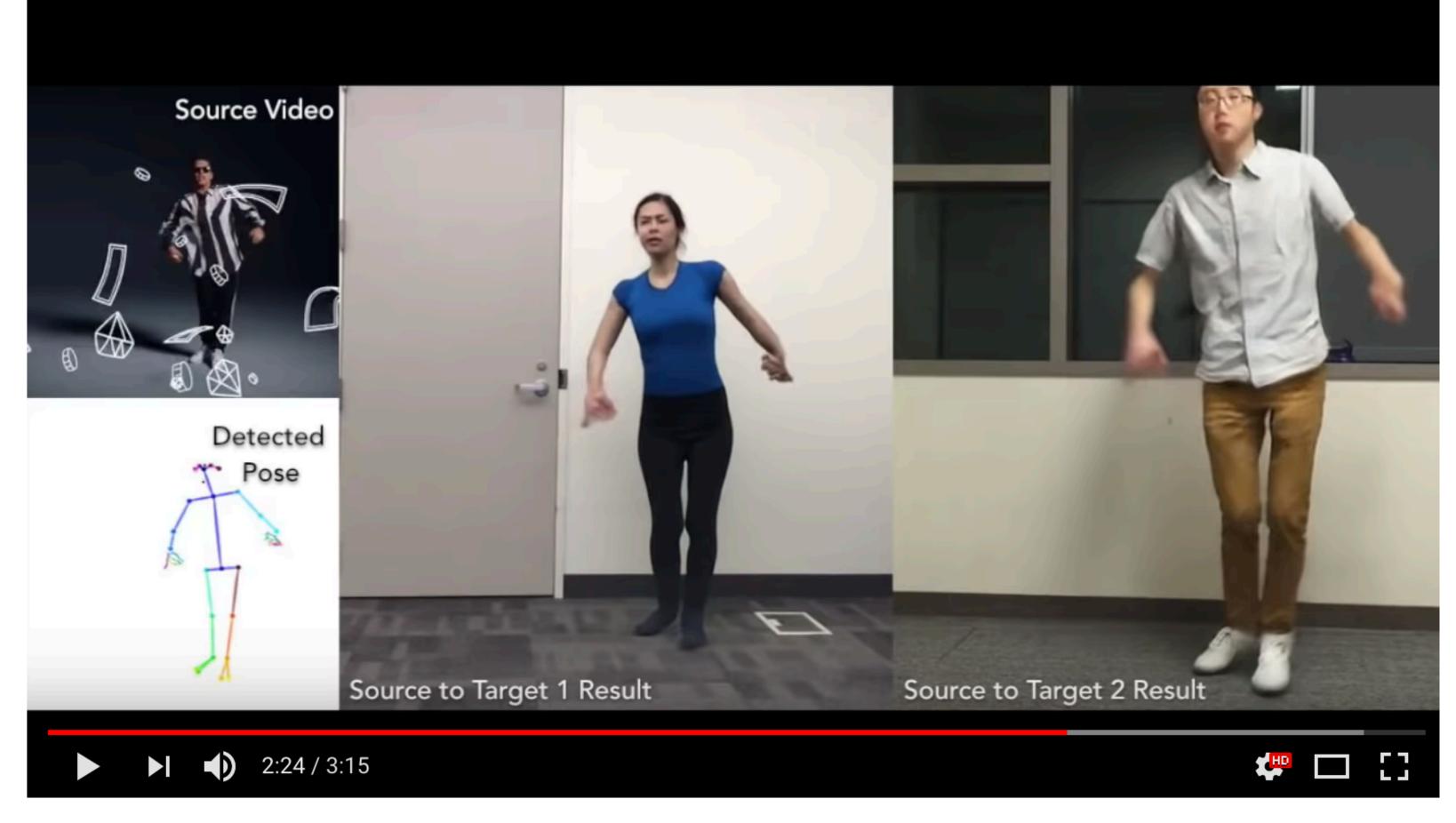
Video-to-Video

Pose-to-Body Results

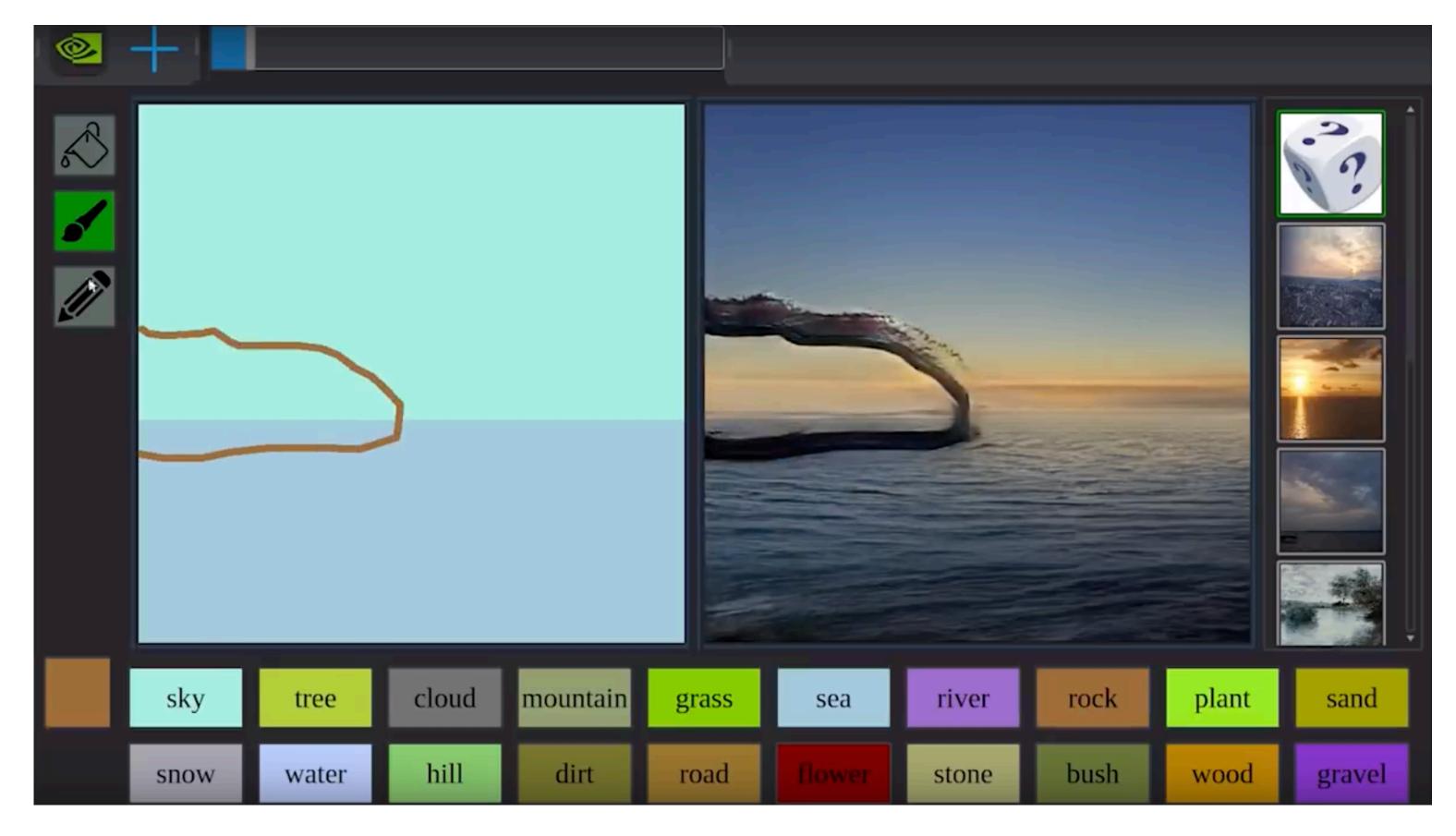




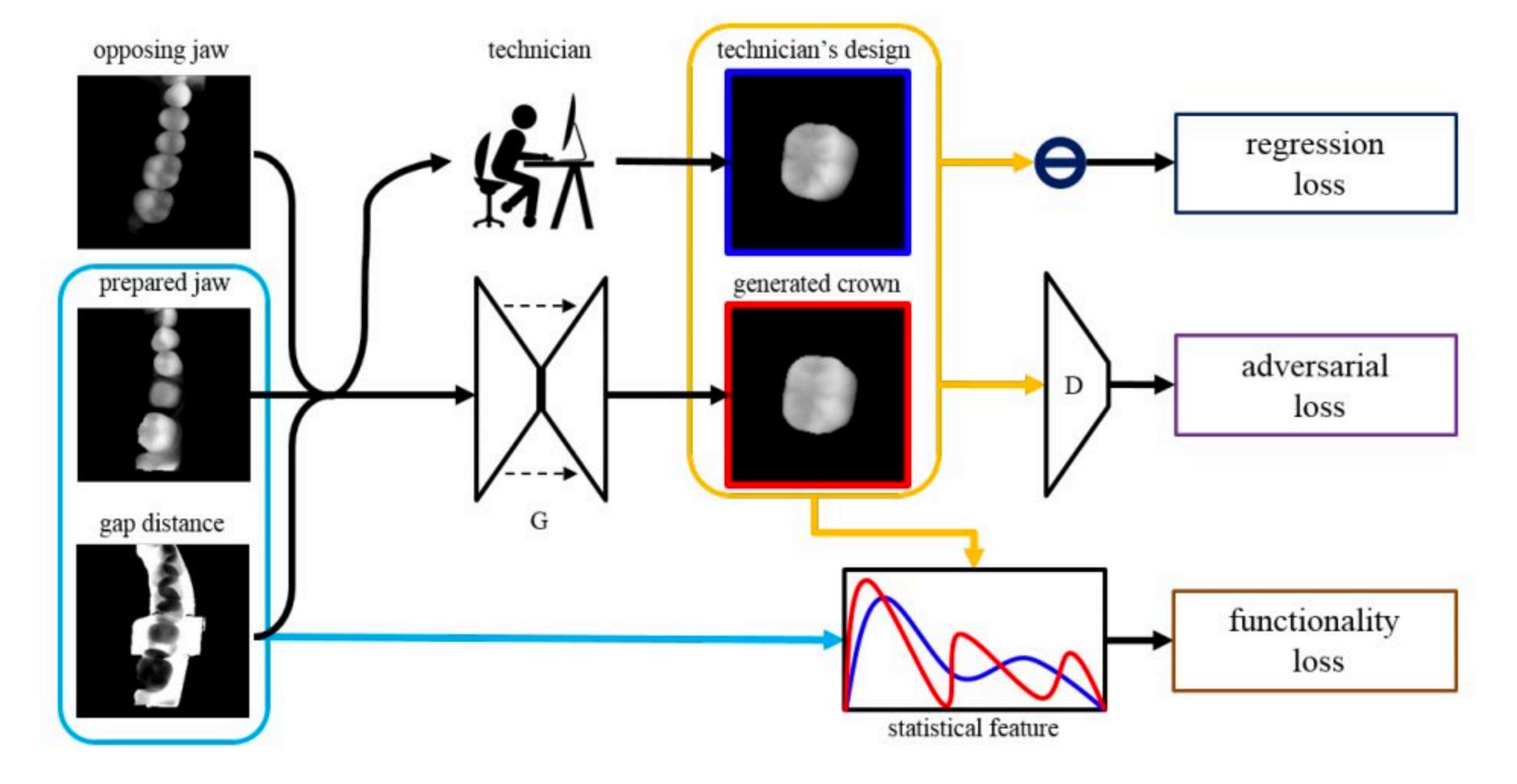
Everybody Dance Now



GauGAN



(Park et al 2019)



Personalized GANufacturing

(Hwang et al 2018)

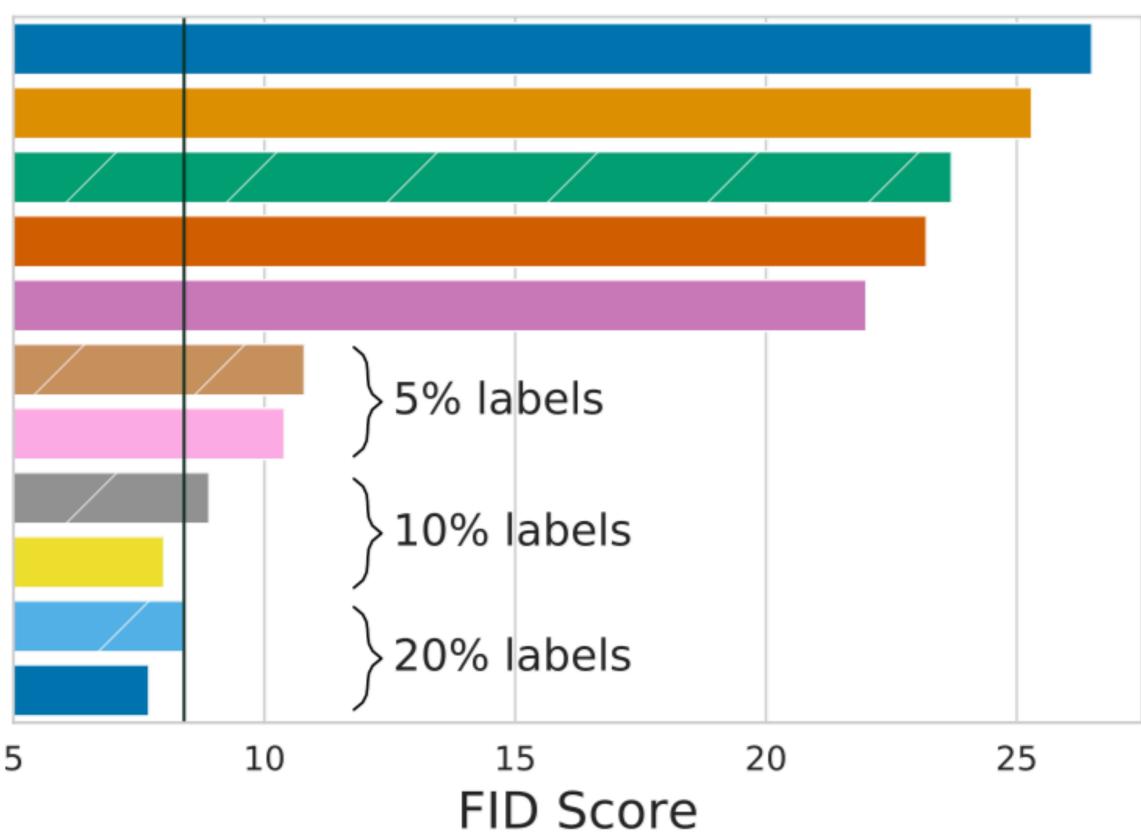
(Fake)

(Brock et al, 2018)BigGAN Large scale TPU implementation

Recent Advances

Style-based generators (Karras et al, 2018)

Reducing Supervision Needed for "Unsupervised" Learning

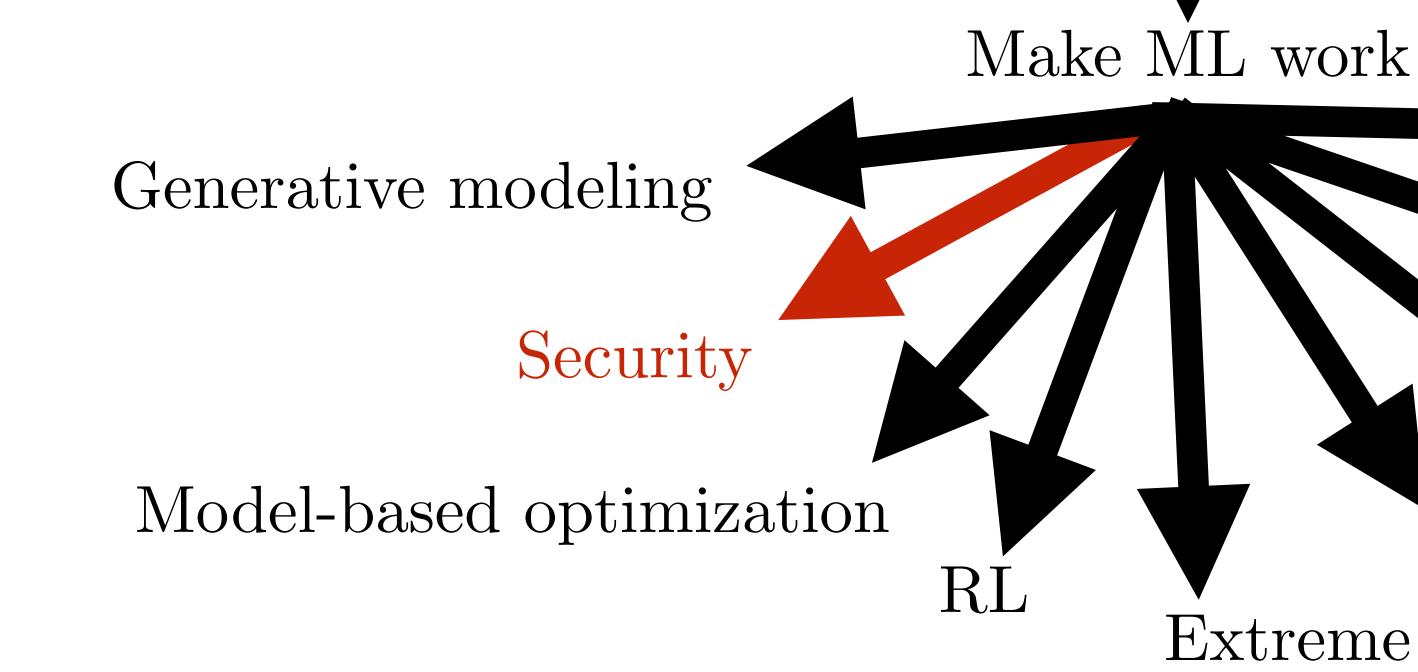


Random label Single label Single label (SS) Clustering Clustering (SS) $S^2 \; \mathsf{GAN}$ $S^3 \mathsf{GAN}$

- $S^2 \; \mathsf{GAN}$
- $S^3 \text{ GAN}$
- $S^2 \operatorname{GAN}$

 $S^3 \text{ GAN}$

(Lucic+Tschannen+Ritter et al 2019)



Neuroscience

Fairness, accountability and transparency Domain adaptation

Adversarial Examples



58% panda

 $+.007 \times$



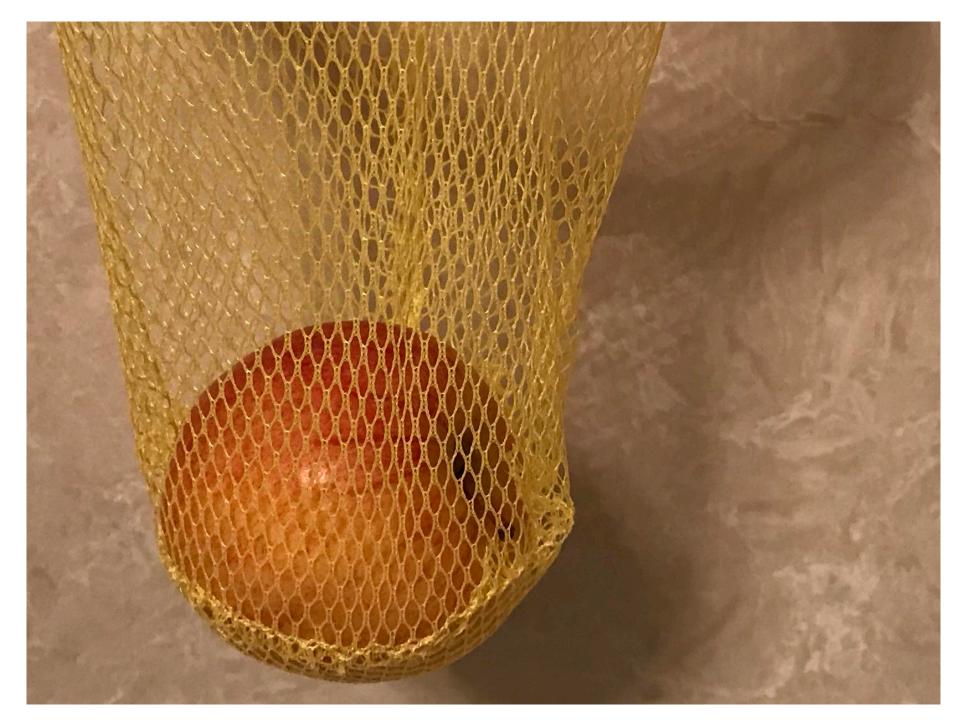


99% gibbon

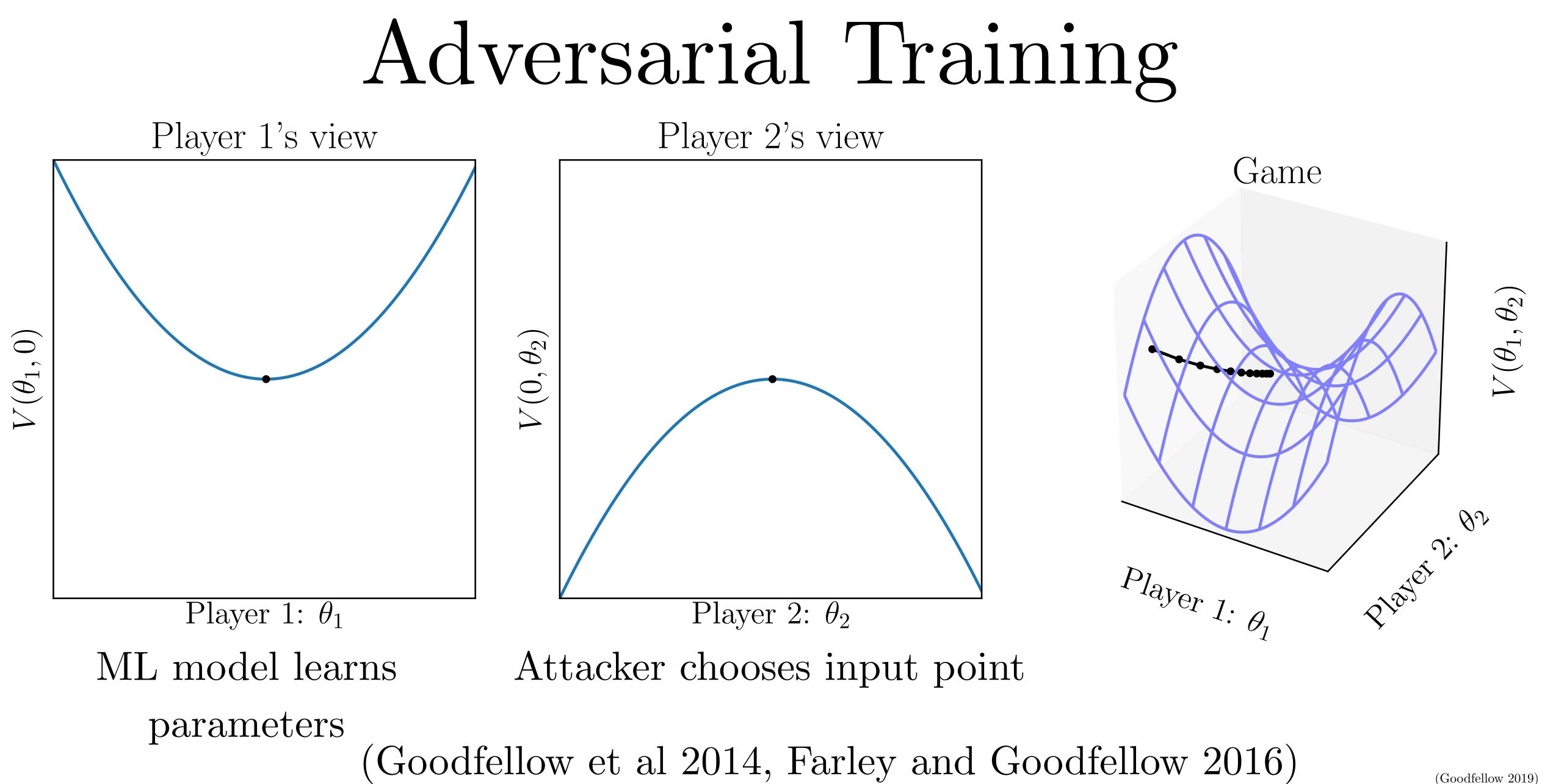
(Goodfellow et al, 2014)

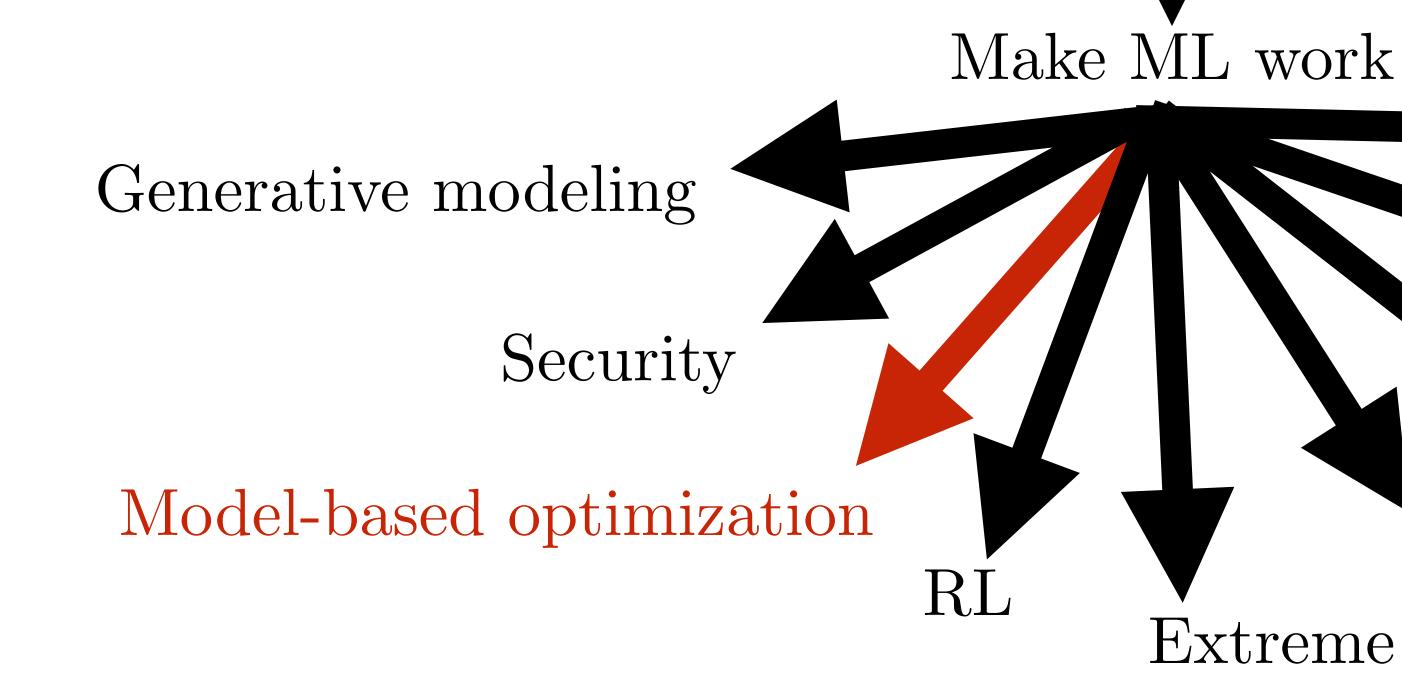
Also Adversarial Examples

(Eykholt et al, 2017)



(Goodfellow 2018)

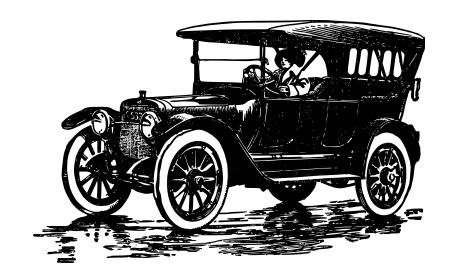


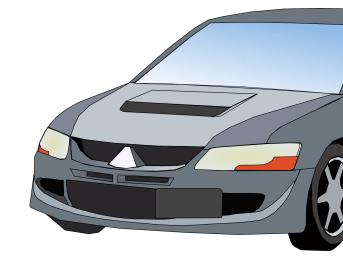


Neuroscience

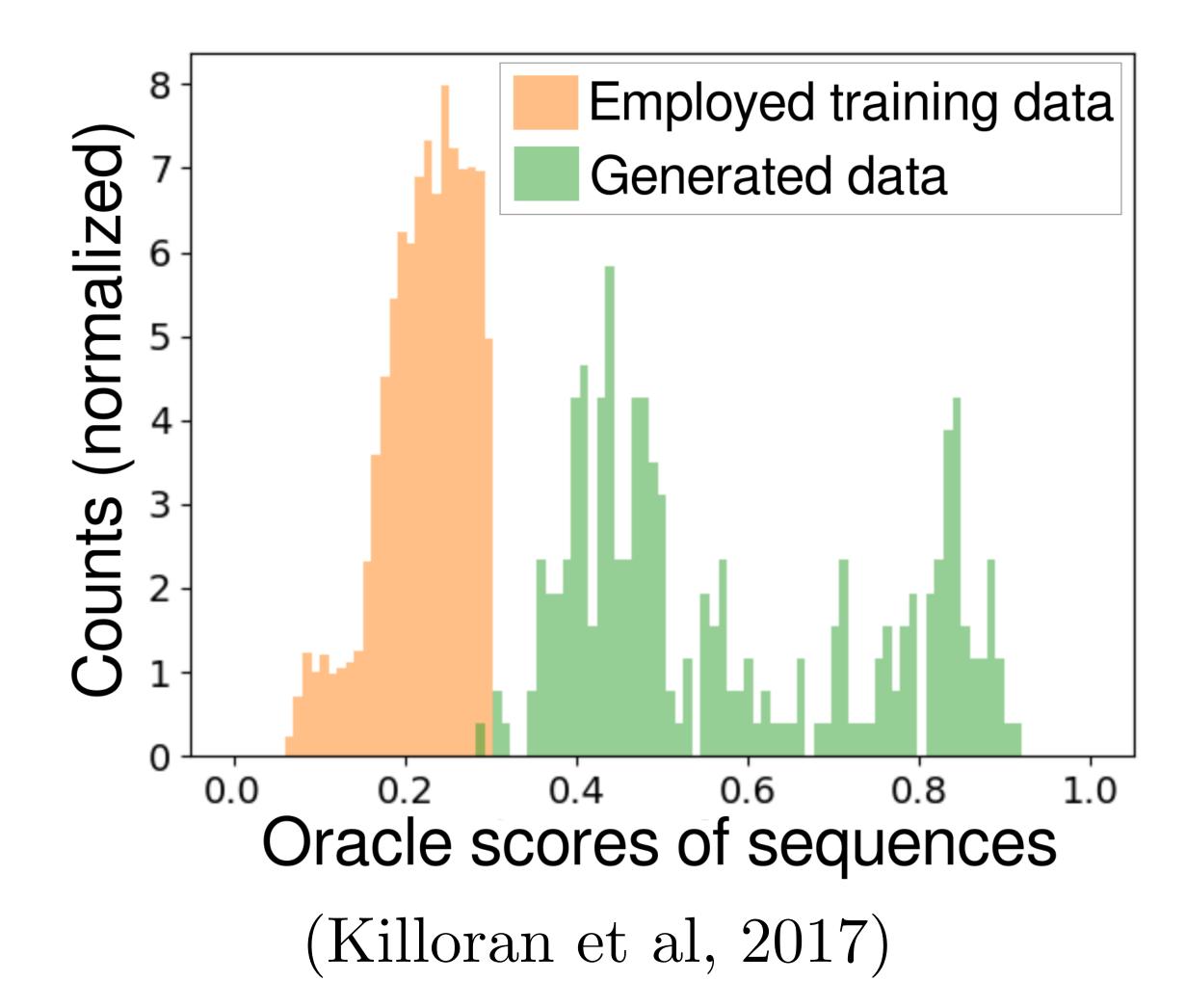
Fairness, accountability and transparency Domain adaptation

Model-Based Optimization

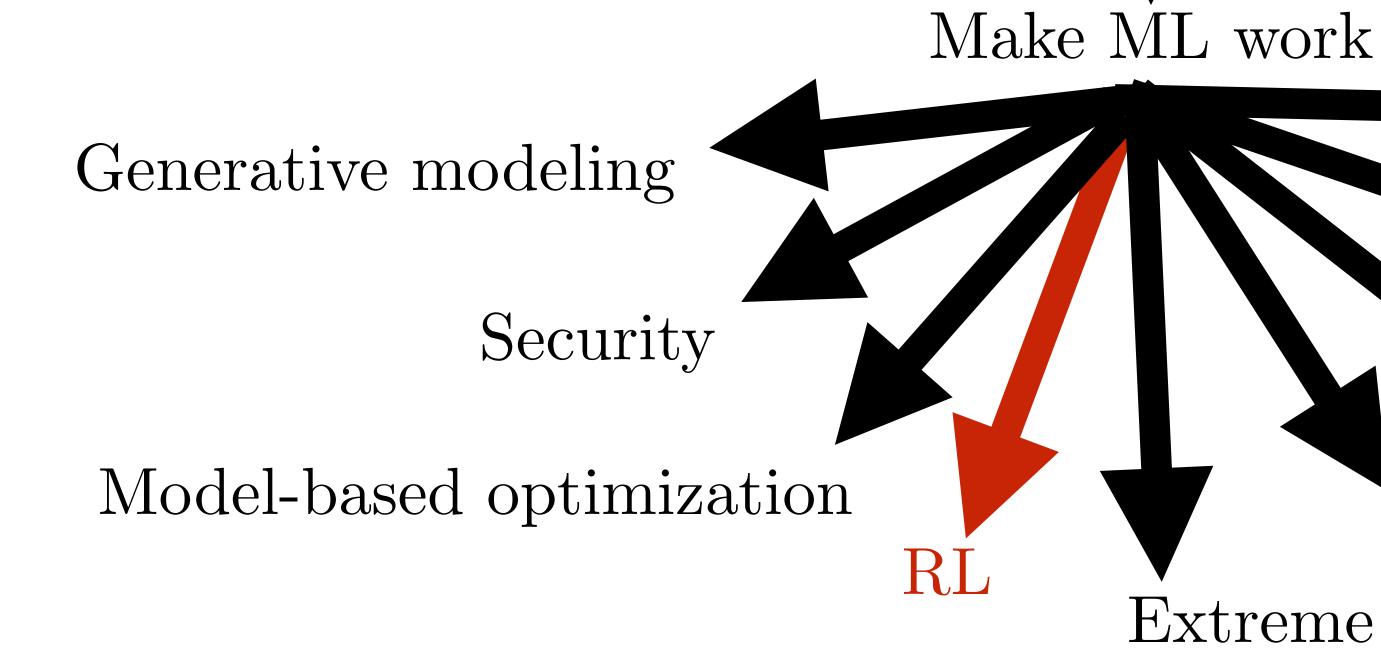




Designing DNA to optimize protein function



(Gupta and Zou, 2018)

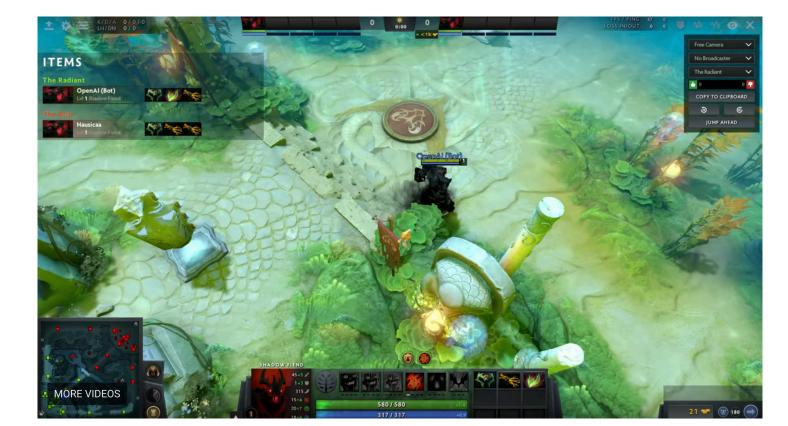


Neuroscience

Fairness, accountability and transparency Domain adaptation

Self-Play

1959: Arthur Samuel's checkers agent

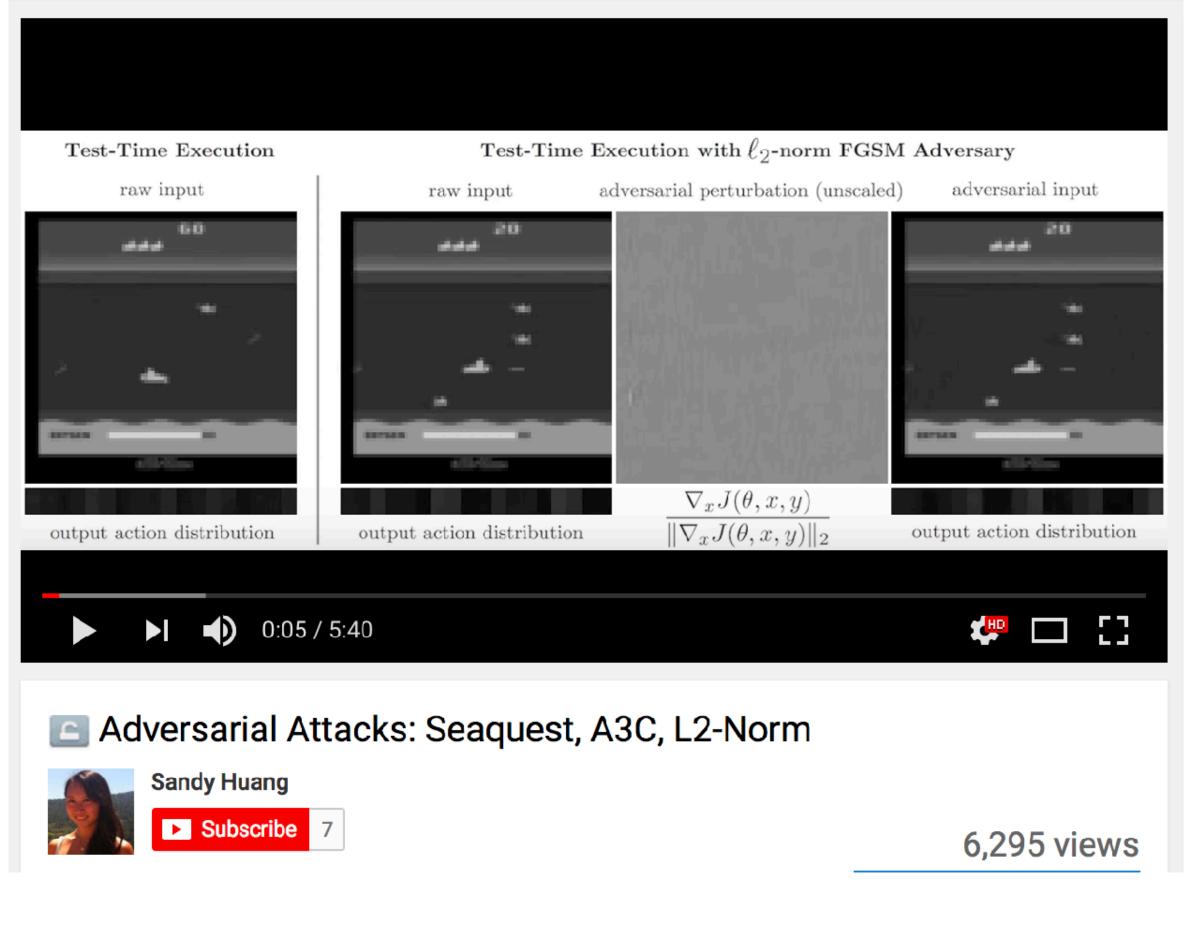


(OpenAI, 2017)

Goal: push opponent outside the ring, or topple them over

(Bansal et al, 2017)

Adversarial Examples for RL



 $(\underline{\text{Huang et al.}}, 2017)$

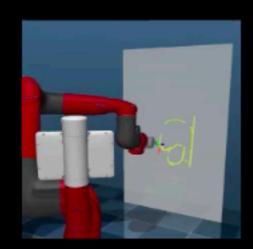
SPIRAL Synthesizing Programs for Images Using Reinforced Adversarial Learning

Input Program end = [(9, 12), (3, 16), (17, 26), (30, 26), (30, 26), (30, 26), (20, 22), (16, 14), (30, 21), ...], <mark>ctl</mark> = [(8, 11), (8, 24), (3, → 25), (10, 25), (18, 25), (23, 25), (17, 21), (17, 22), (18, 22), ...], pen = [0, 1, 1, 1, 1, 1, 0, Image 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

(Ganin et al, 2018)

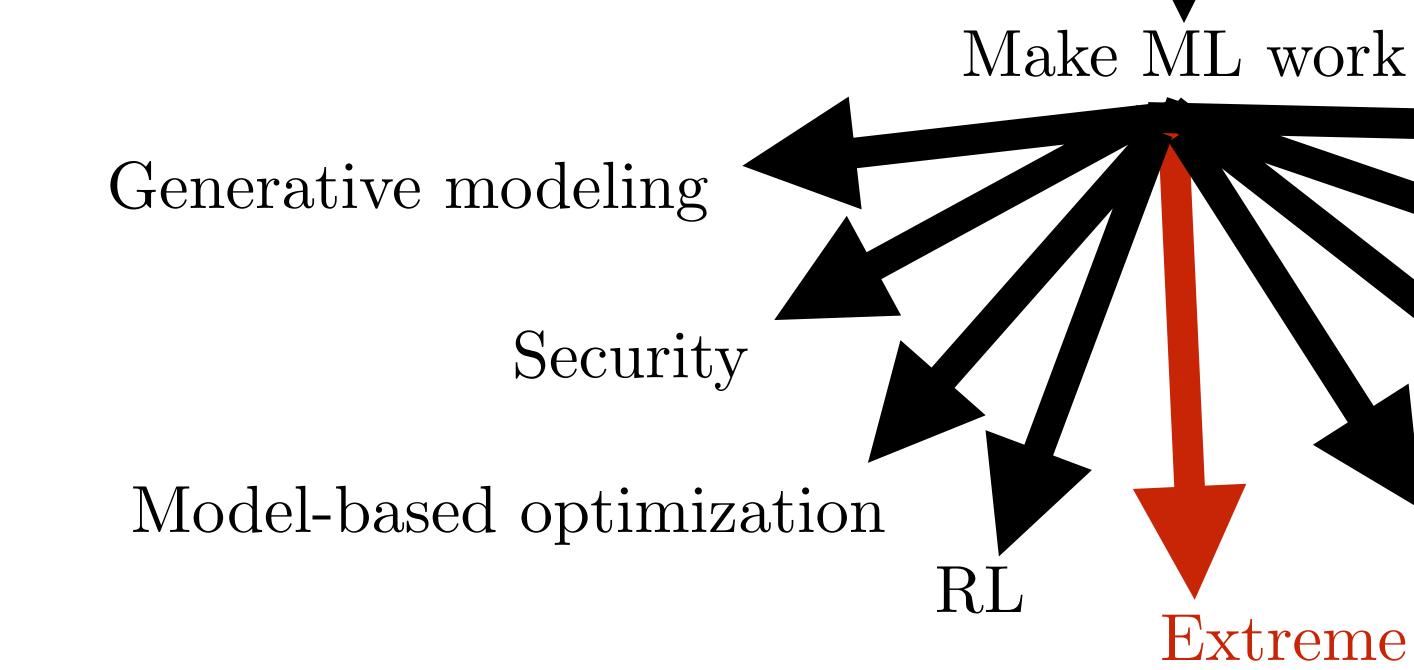
Interpreters

Simulated Paint



Simulated Arm

Real Arm



Neuroscience

Fairness, accountability and transparency Domain adaptation

Robustness and verification techniques essential for air traffic control, surgery robots, etc.

0.2

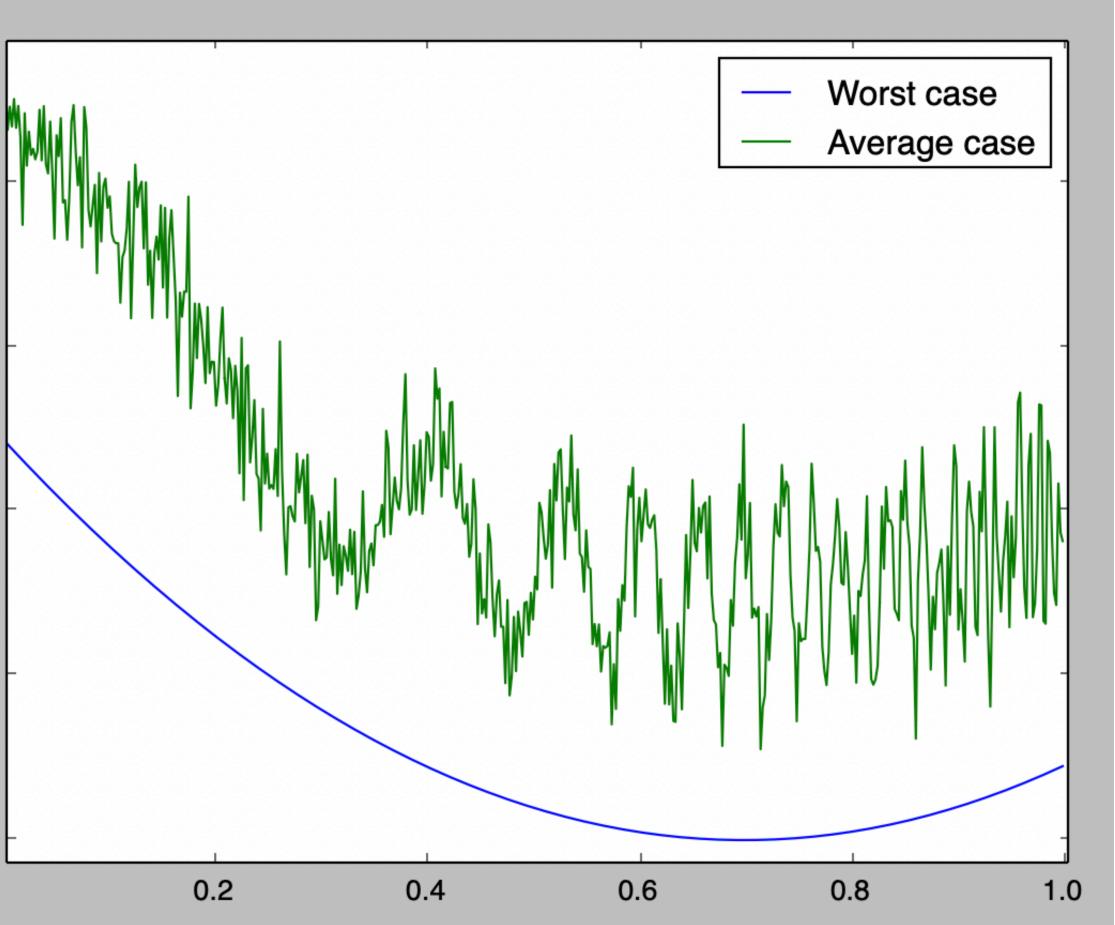
0.8

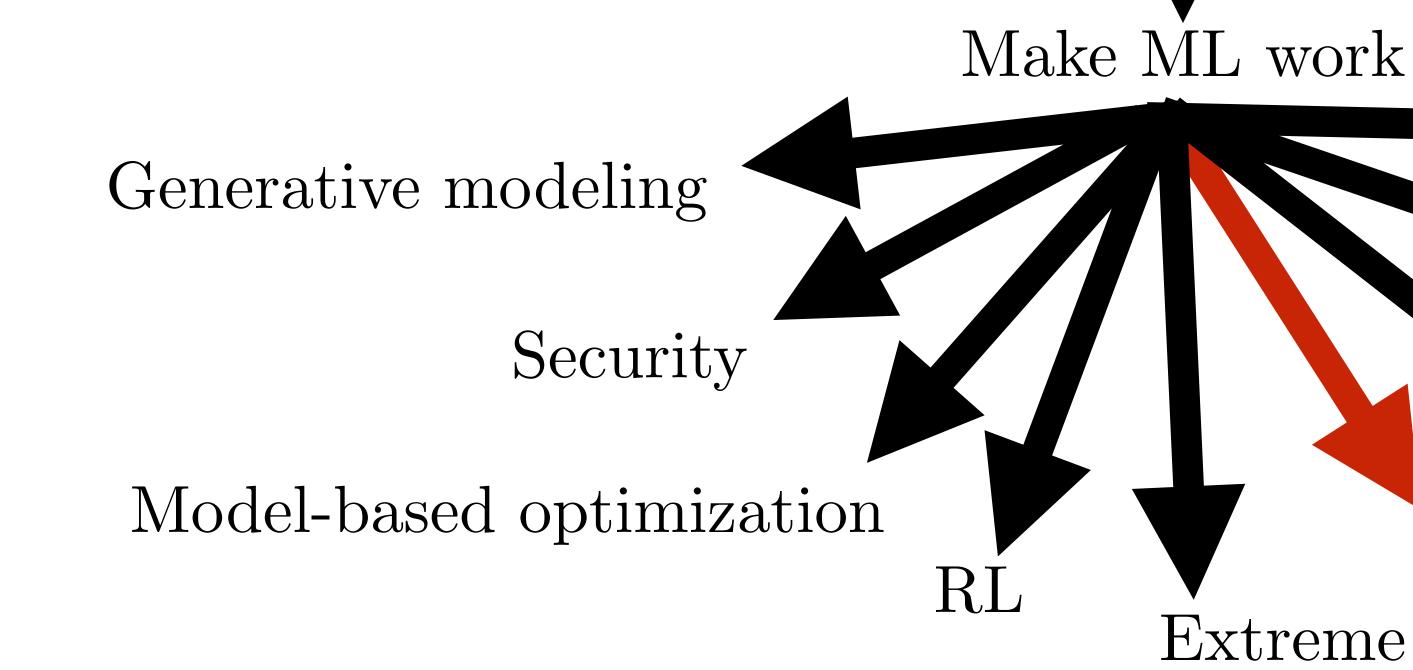
0.6

0.4

0.0

Extreme Reliability

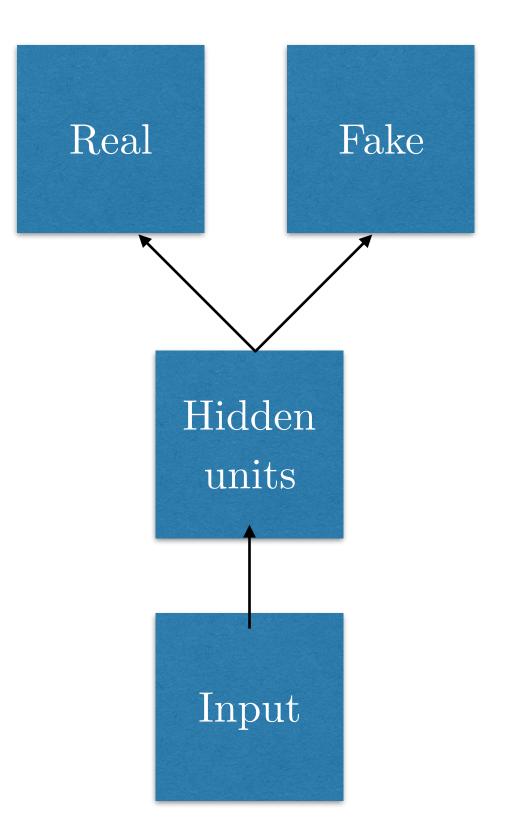


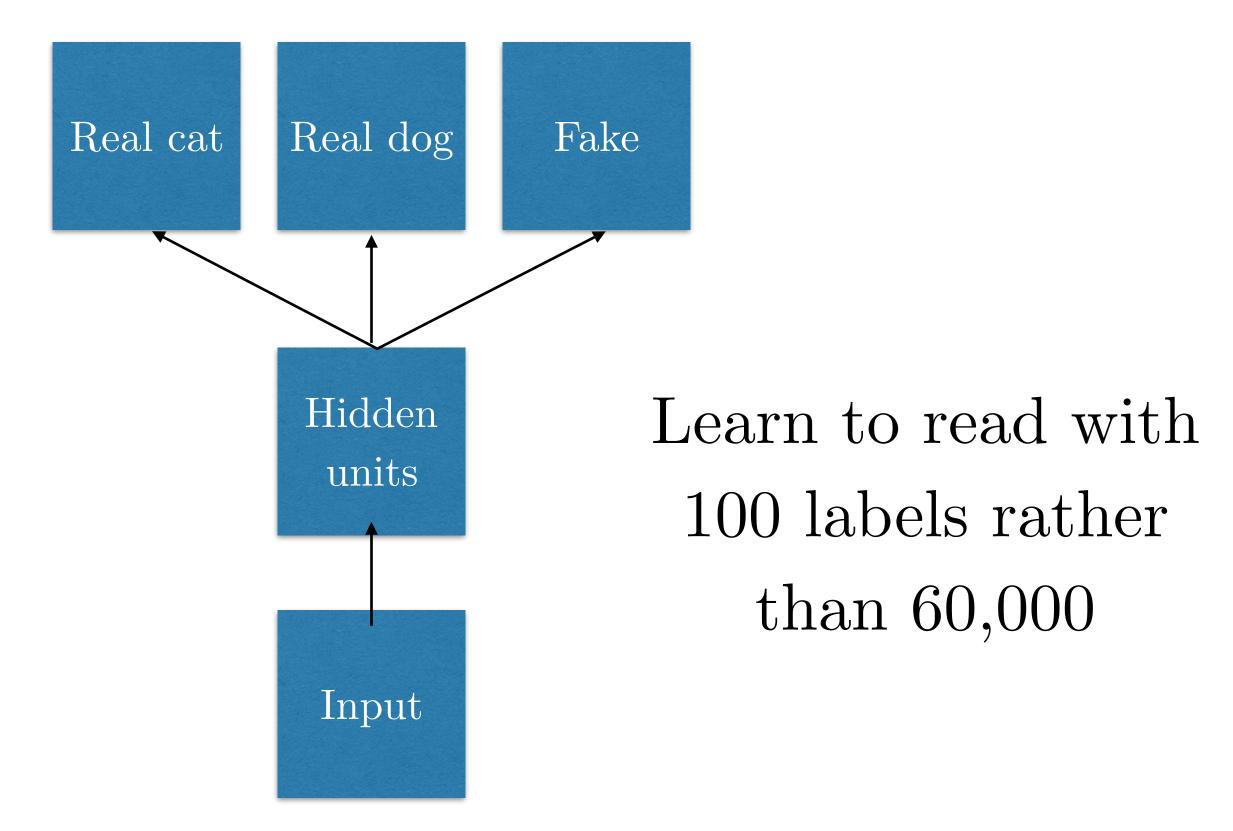


Neuroscience

Fairness, accountability and transparency Domain adaptation

Supervised Discriminator for Semi-Supervised Learning



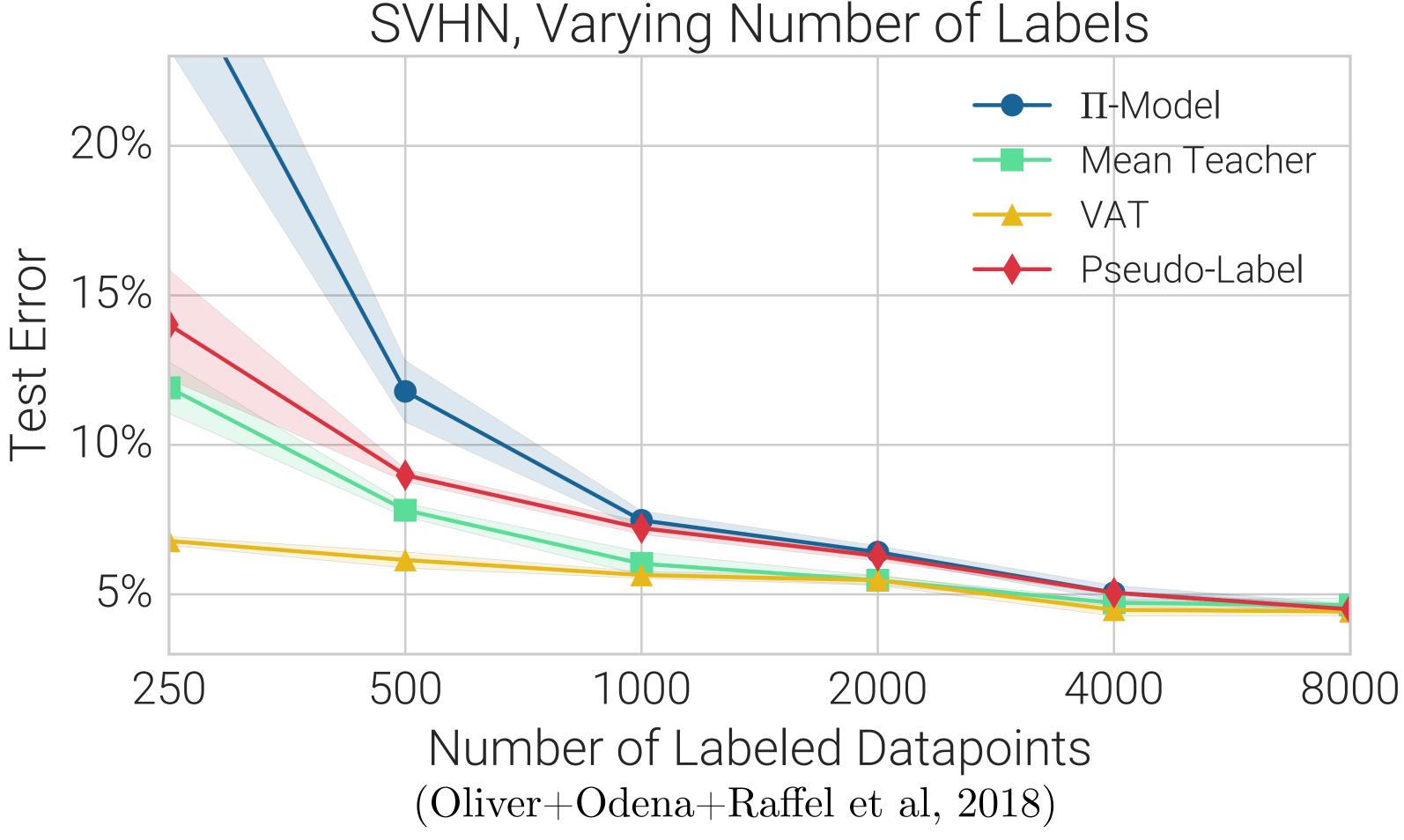


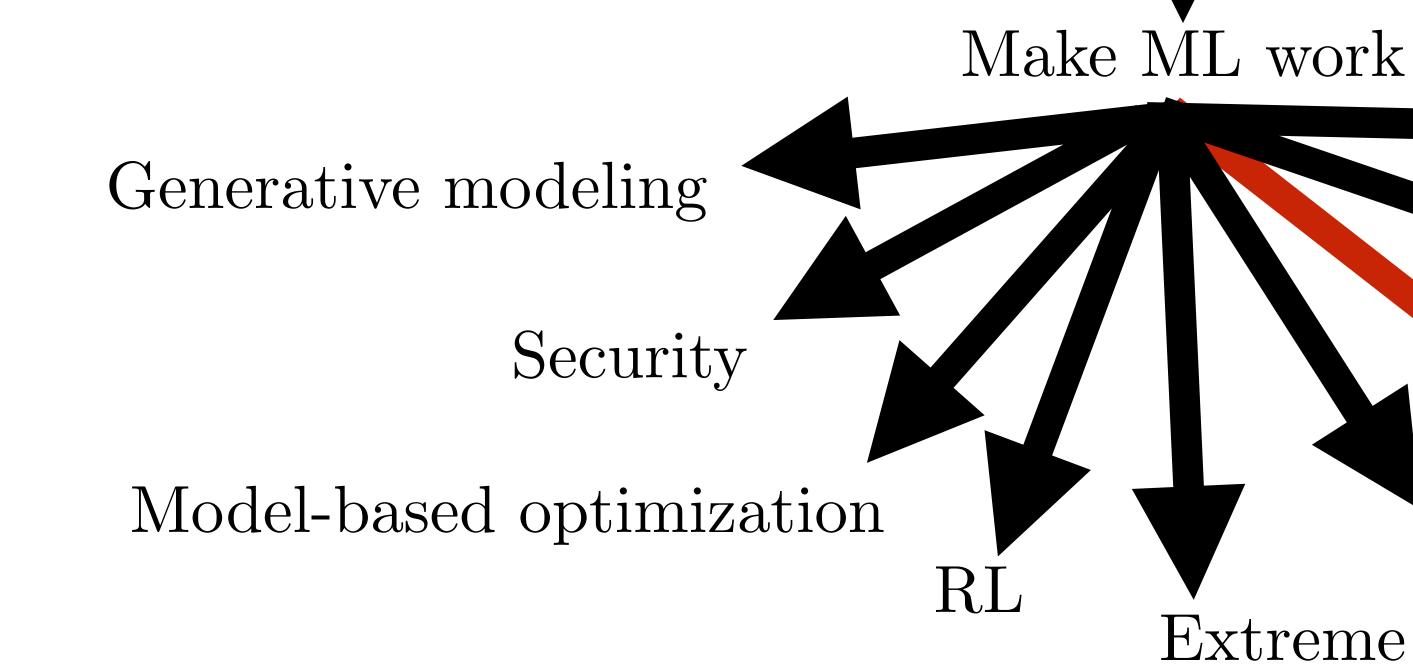
(Odena 2016, Salimans et al 2016)

(Goodfellow 2019)

Virtual Adversarial Training Miyato et al 2015: regularize for robustness to adversarial perturbations of

unlabeled data





Neuroscience

Fairness, accountability and transparency Domain adaptation

• Domain Adversarial Networks (Ganin et al, 2015)

VIPER

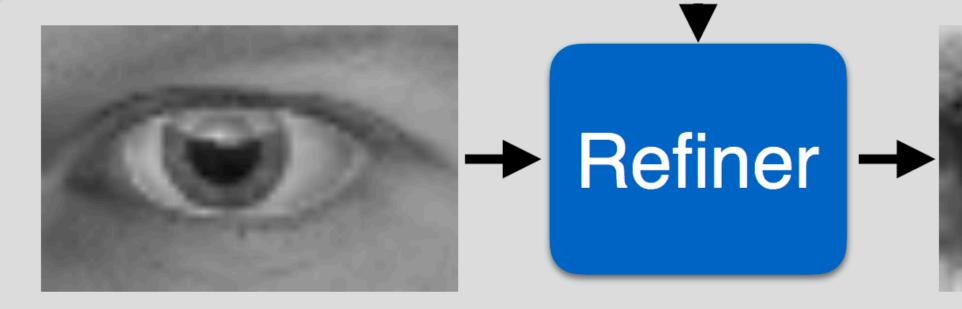
• Professor forcing (Lamb et al, 2016): Domain-Adversarial learning in RNN hidden state

Domain Adaptation

PRID

CUHK

GANs for simulated training data Unlabeled Real Images



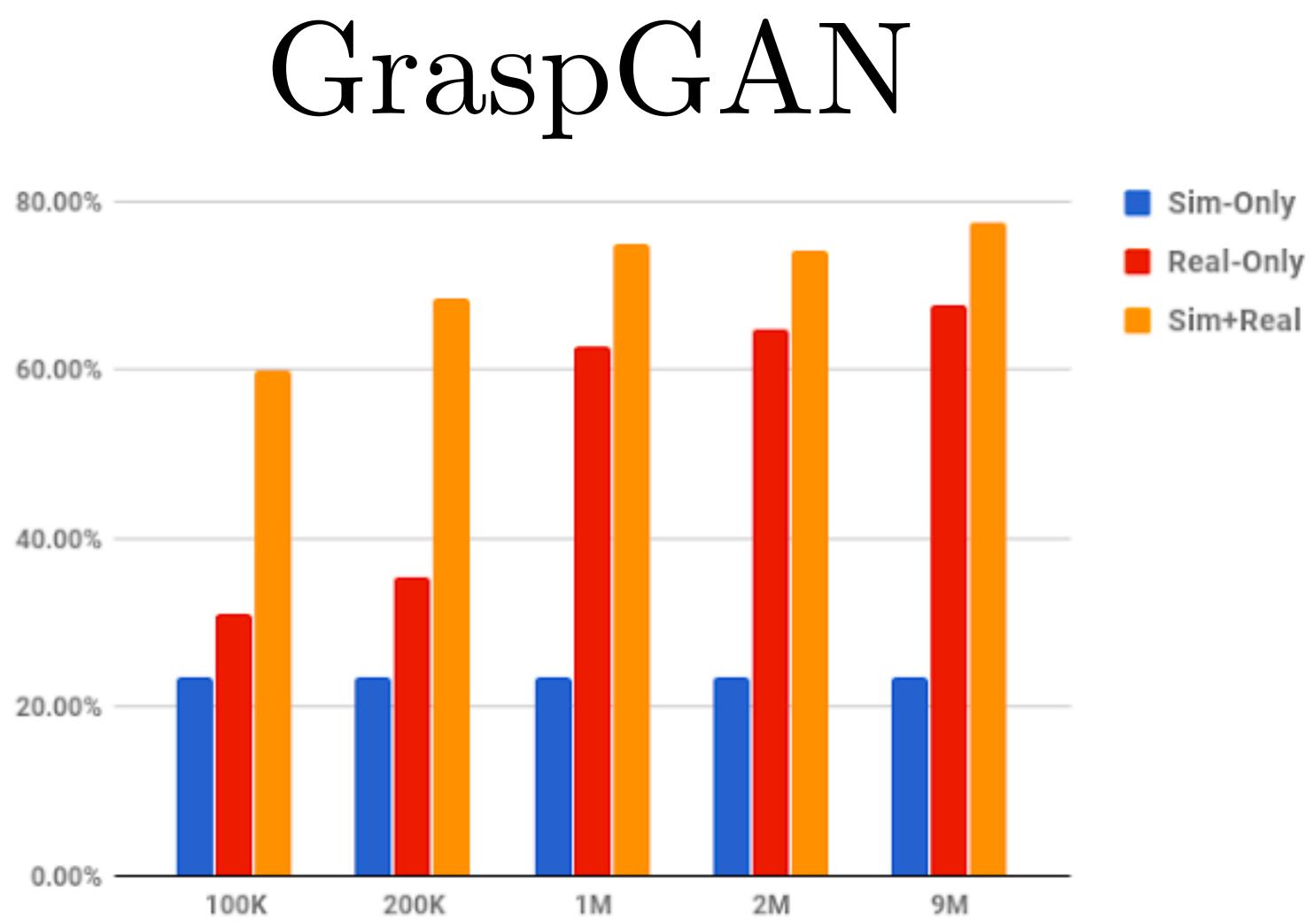
Synthetic

Refined

(Shrivastava et al., 2016)

GraspGAN

(Bousmalis et al. 2017)



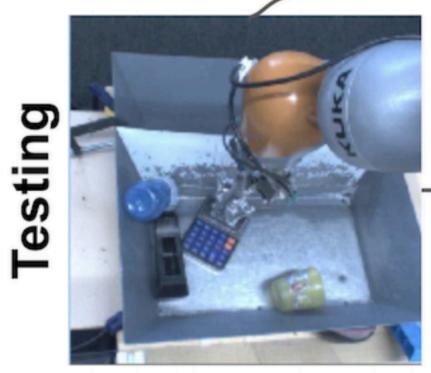
Grasp Success in the Real World

Number of Real-World Samples Used for Training

(Bousmalis et al, 2017)

G

Randomized Simulation



Real World

(James et al, 2018)

Sim-to-real via sim-to-sim

action

Agent

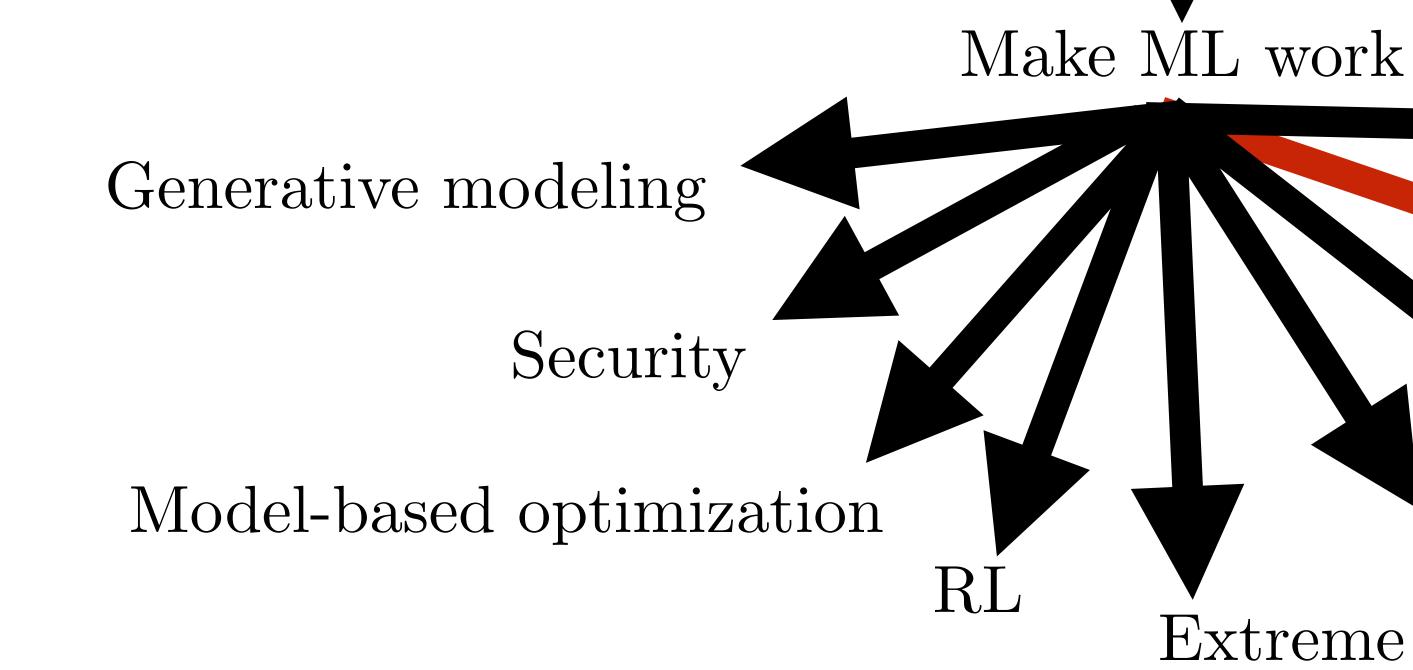
Agent

action

Canonical Simulation

> Learn to grasp without real data!

Canonical Simulation



Neuroscience

Fairness, accountability and transparency Domain adaptation

Label efficiency Extreme reliability

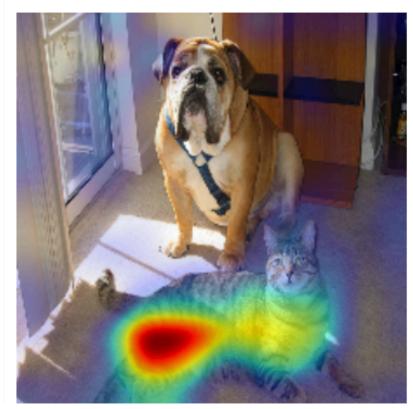
(Goodfellow 2019)

Adversarially Learned Fair Representations

- Edwards and Storkey 2015
- Learn representations that are useful for classification
- make S impossible to recover
- Final decision does not depend on S

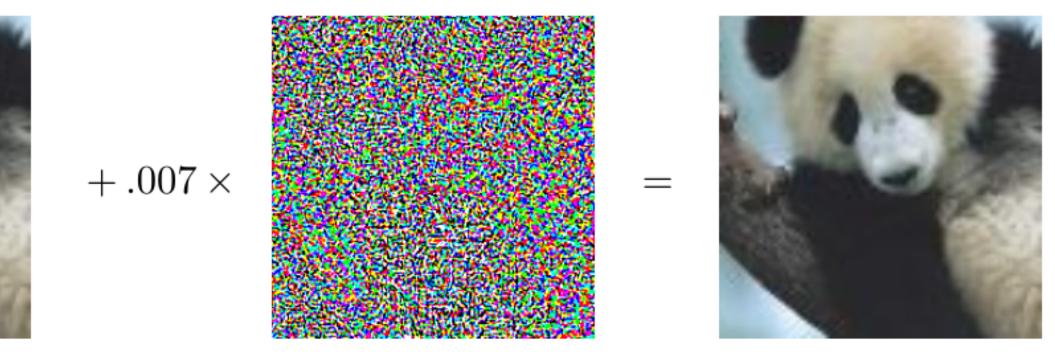
• An adversary tries to recover a sensitive variable Sfrom the representation. Primary learner tries to

How do machine learning models work?



(c) Grad-CAM 'Cat'

(i) Grad-CAM 'Dog' (Selvaraju et al, 2016)

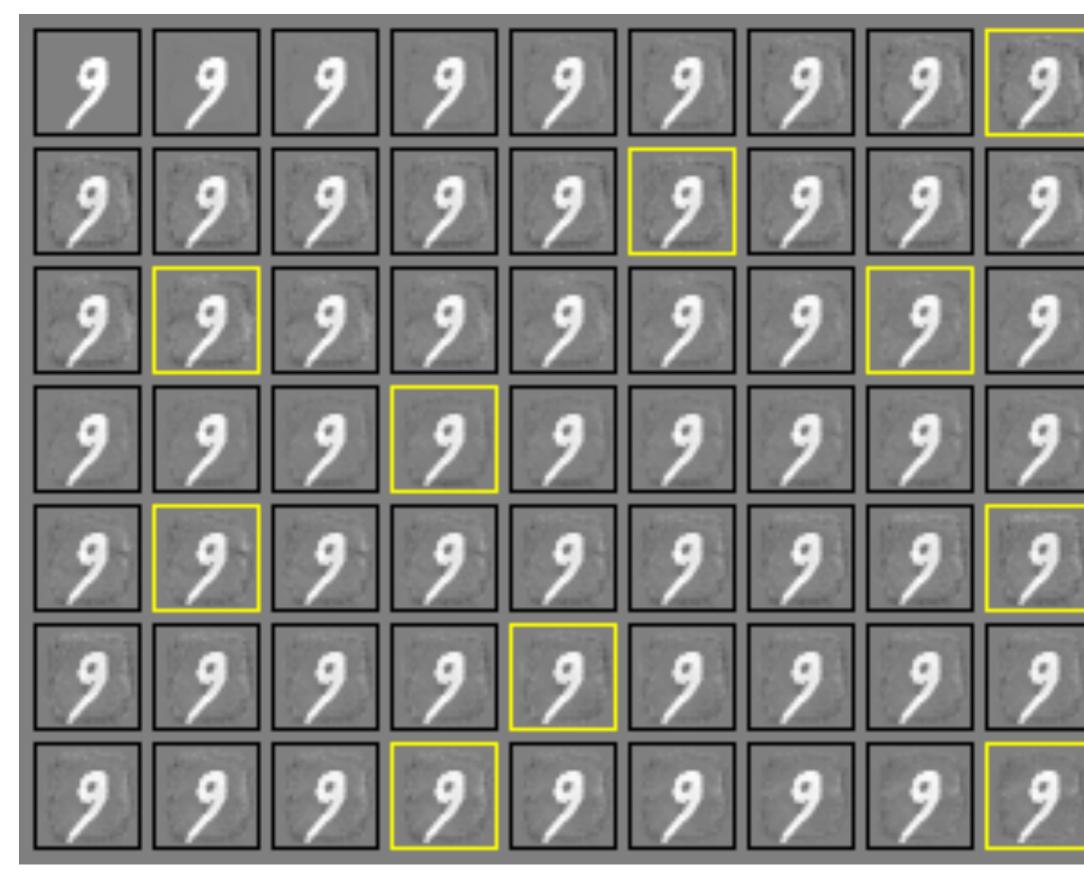


(Goodfellow et al, 2014)

Interpretability literature: our analysis tools show that deep nets work about how you would expect them to.

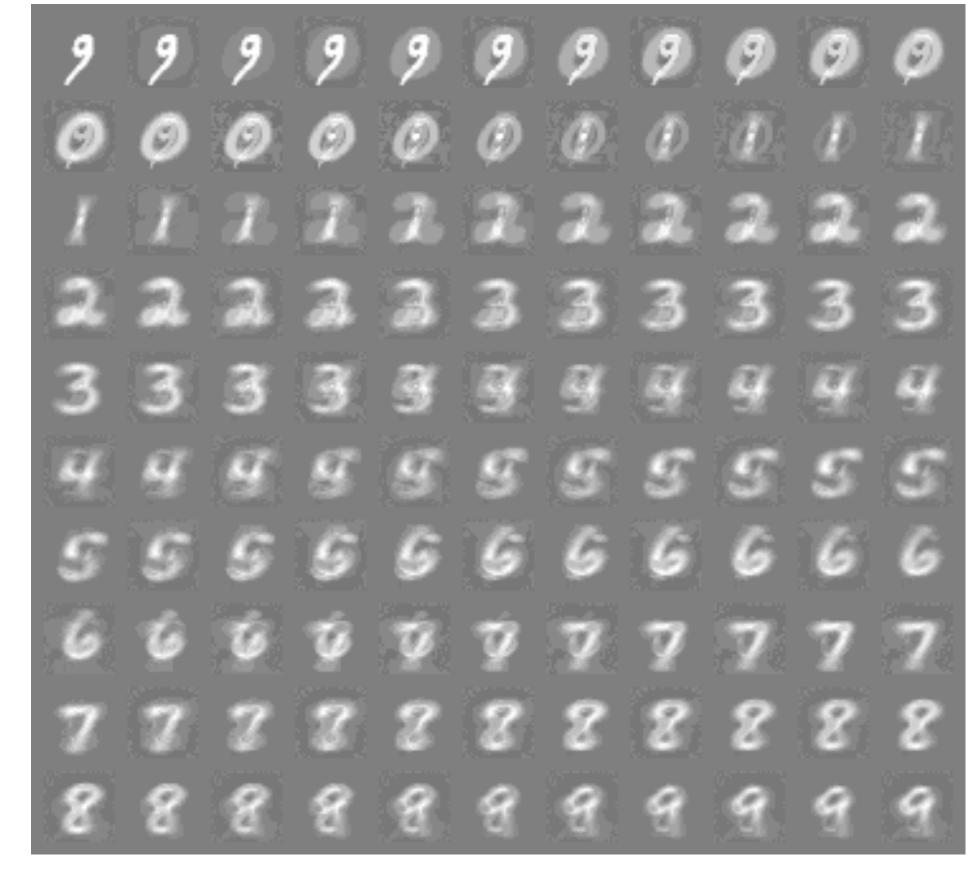
Adversarial ML literature: ML models are very easy to fool and even linear models work in counter-intuitive ways.

Robust models are more interpretable

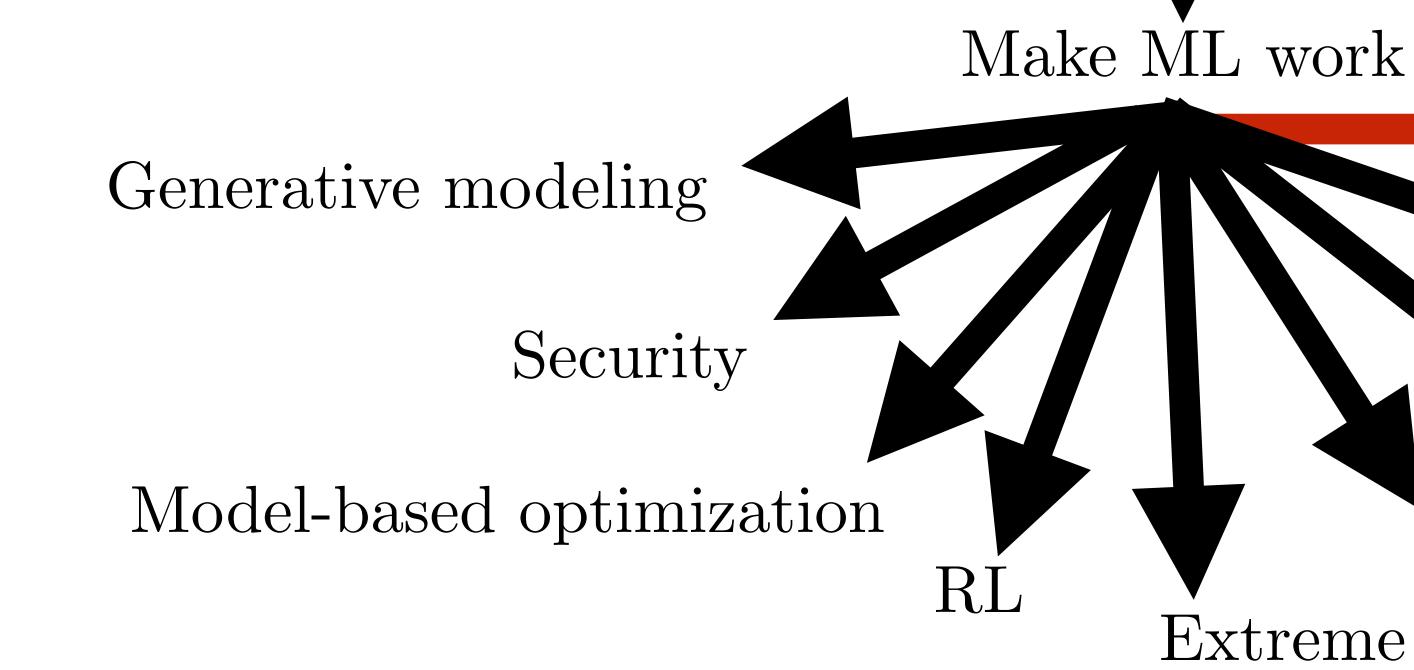


Relatively vulnerable model

(Goodfellow 2015)



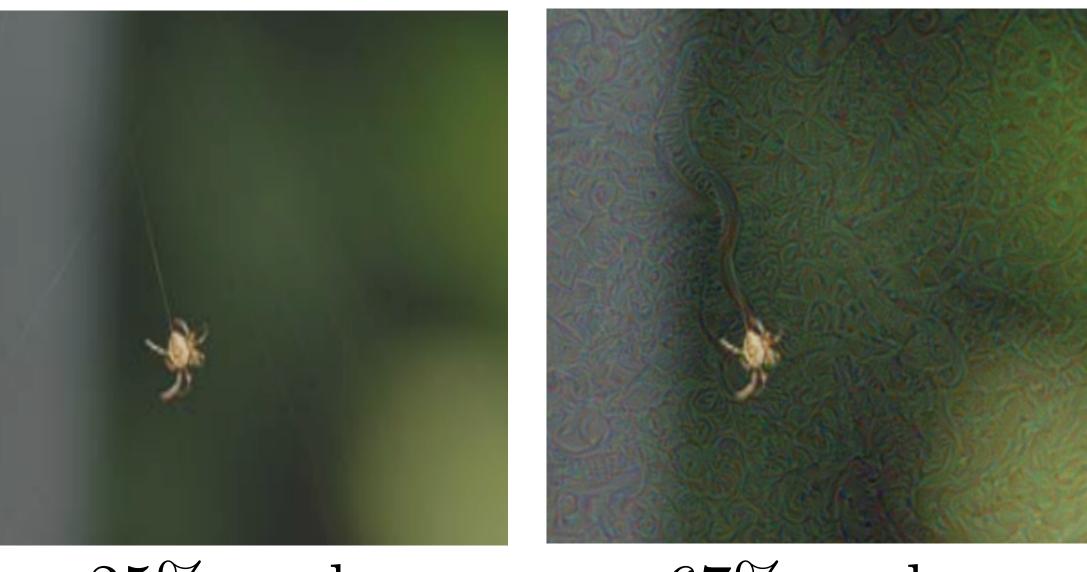
Relatively robust model



Neuroscience

Fairness, accountability and transparency Domain adaptation

Adversarial examples that affect both computer and time-limited human vision



25% snake

67% snake

Elsayed et al 2018

Questions

