Deep learning of representations and its application to computer vision

Ian Goodfellow

Summary

- Deep learning background
- Four articles:
 - Spike-and-slab modeling
 - Multi-prediction deep Boltzmann machines
 - Maxout
 - Street number transcription

Machine learning

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

-Tom Mitchell

Maximum likelihood estimation

- Pick parameters that maximize model's probability of generating the observed data
- Given enough data, recovers the true model

Gradient descent

Supervised Learning

- Data is features X and targets y
- Goal: learn to map x to y
- Classification: discrete y
- Regression: continuous y

Unsupervised learning for feature learning

Deep learning

Spike-and-Slab Sparse Coding

- Co-authors: Aaron Courville and Yoshua Bengio
- Motivated by Adam Coates' work on feature learning and feature extraction
- Faster form of variational inference
- Component of a deep model

Motivating CIFAR-10 results

- Validation set accuracy (Coates and Ng 2011):
 - RBM features encoded with RBM: 74.1%
 - RBM features encoded with sparse coding: 76.7%
- Test set accuracy (Courville et al 2011):
 - ssRBM: 76.7%

Variational learning

- Approximate intractable P(h|v) with tractable Q(h)
- Use Q to construct a lower bound on the log likelihood

Variational inference

- $\mathcal{L}(v,Q) = \mathbb{E}_{h\sim Q}[\log P(v,h)] + H_Q(h)$
- Maximizing this corresponds to minimizing

 $D_{KL}(Q(h) \| P(h \mid v))$

 Often requires both analytical and iterative optimization

The Spike-and-Slab Sparse Coding (S3C) Generative Model

$$p(h_i = 1) = \sigma(b_i)$$

$$p(s_i \mid h_i) = \mathcal{N}(s_i \mid h_i \mu_i, \alpha_{ii}^{-1})$$

$$p(v_d \mid s, h) = \mathcal{N}(v_d \mid W_{d:}(h \circ s), \beta_{dd}^{-1})$$

Scaling beyond previous work

Spike-and-Slab work: Mohammed et al, 2011; Zhou et al., 2009; Garrigues and Olsahusen, 2008; Lücke and Sheik, 2011; Titsias and Lázaro-Gredilla, 2011

Scaling to more classes and fewer labeled examples per class

CIFAR-100 Results

OMP-1+L: Jia and Huang 2011

Transfer Learning Challenge

Labeled training set:

Self-taught learning with S3C won the challenge with a test set accuracy of 48.26%

Multi-Prediction deep Boltzmann machines

- Co-authors: Mehdi Mirza, Aaron Courville, Yoshua Bengio
- Simplified training procedure for deep Boltzmann machines
- Improved accuracy of approximate inference

Typical DBM Training

1. Greedy layerwise pretraining

2. Joint generative training

3. Discriminative fine-tuning

Salakhutdinov and Hinton, 2009

Sampling-based approximations

- p(x;θ)=exp(-E(x;θ))/Z(θ)
- What if Z(θ) is intractable?
- $\frac{\partial}{\partial \theta_i} \log Z = -\mathbb{E}_x \left[\frac{\partial}{\partial \theta_i} E(x; \theta) \right]$
- Approximate expectations via sampling
- CD-k: sample k steps from data points
- SML/PCD: sample continuously, use low learning rate

Simplify, simplify, simplify,

	Classic approach	Goal	
# models	#layers+2	1	
# criteria	#layers+2	1	
Classifier	Extra classifier model	Same unified probabilistic model	

Backprop through the mean field inference graph

Randomly sample different inference problems

Benefits of Multi-Prediction Training

- Learning rate doesn't affect approximation accuracy
- Training compensates for approximate inference
 - Similar to Stoyanov et al 2011

Multi-Inference Trick

Results

Centering: Montavon and Müller, 2012

Multi-prediction, 2X hidden units, no fine-tuning*: 0.91 *Retrained using validation set.

Mission Accomplished

	Classic approach	Goal
# models	#layers+2	1
# criteria	#layers+2	1
Classifier	Extra classifier model	Same unified probabilistic model

Maxout Networks by Ian Goodfellow

Joint work with

David Warde-Farley

Yoshua Bengio

with acknowledgments to

Pascal Lamblin

Traditional activation functions

Maxout

$h_i = max_j z_{ij}$

Comparing maxout to rectifiers

Effectiveness of pooling

Applications of maxout

- Speech: Miao et al 2013, Cai et al 2013, Zhang et al 2014, Swietojanski et al 2014
- Multiplayer game matchmaking: Laufer et al, 2013
- Text detection: Jaderberg et al 2014
- Text transcription: Alsharif and Pineau, 2013
- Simplifying optimization: Gulcehre 2013
- Recurrent networks: Pascanu 2014
- Whale call detection: Smirnov 2013
- Black-box classification: Xie et al, 2013

Street number transcription

- Co-authors: Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet
- Use convolutional networks to read address numbers from Street View Images
- Automated transcription of over 100 million real address numbers

Architecture

Google

Training

Log likelihood:

$$\log P(L = l \mid X) + \sum_{i=1}^{L} \log P(S_i = s_i \mid X)$$

MAP sequence inference

$\operatorname{argmax}_{L,S_1,\ldots,S_L} \log P(S \mid X)$

$$\log P(L=1) + \log P(S_1 = "1")$$

 $\log P(L=2) + \log P(S_{1:2} = "17")$

$$\log P(L=3) + \log P(S_{1:3} = "175")$$

 $\log P(L=4) + \log P(S_{1:4} = "1751")$

Accuracy

	Coverage@ human accuracy (98%)	Accuracy	Per Character Accuracy	Per Character Accuracy (Prev. state of the Art)
Public SVHN	95.6%	96%	97.8%	97.7%
Private Dataset	89%	91%		

1180 vs. 1780

1844 vs. 184

2 vs 239

100 vs. 676

Google

Effect of depth

Accuracy versus depth

Number of hidden layers

Effect of # of parameters

Effect of model size

Number of parameters

Accuracy

Conclusion

- Unsupervised learning useful when very little labeled data available
- Generative models useful for missing value problems
- Implicit ensembles and/or lots of data are much more effective