Qualitatively Characterizing

Neural Network Optimization
Problems
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Factored linear view

(Cartoon of
Saxe et al 2013’s
worldview)




Attractive saddle point view

(Cartoon of
Dauphin et al 2014’s
worldview)
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Questions

* Does SGD get stuck in local minima?

* Does SGD get stuck on saddle points?

* Does SGD wind around numerous bumpy
obstacles?

* Does SGD thread a twisting canyon!?
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History written by the winners

* Visualize trajectories of (near) SOTA results
* Selection bias: looking at success

* Fallure is interesting, but hard to attribute to
optimization

* (Careful with interpretation

e SGD never encounters X!

e SGD falls if it encounters X!
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2-D subspace visualization
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A special 1-D subspace

2.5

2.0

1.51

N
ul
Cost

Cost ™

0.0

0.0 0.5

Interpolation plot

1.0 15

2.5

2.0

2.0

| Learning curve

Cost

0.0
0

10

2015 International Conference on Representation Learning --- Goodfellow, Vinyals, and Saxe




2-parameter deep linear mode|
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Maxout / MNIST experiment

Linear interpolation of adversarially trained maxout on MNIST SGD training of adversarial maxout on MNIST
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Other activation functions

Linear interpolation of sigmoids on MNIST Linear interpolation of ReLUs on MNIST
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Convolutional network

25 Linear interpolation of convolutional maxout on CIFAR Linear interpolation of convolutional maxout on CIFAR
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10 Linear interpolation of an LSTM on Penn Treebank
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Linear interpolation of an MP-DBM on MNIST
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3-D Visualization
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3-D MP-DBM visualization

\\\\\

2015 International Conference on Representation Learning --- Goodfellow, Vinyals, and Saxe



Random walk control

Divergence of random walk from the main ray (2 dimensional)
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3-D Plots Without Obstacles
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3-D Plot of Adversarial Maxout
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SGD naturally exploits Obstacles!

negative curvature!

Goodfellow, Vinyals, and Saxe
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Conclusion

® [or most problems, there exists a linear
subspace of monotonically decreasing values

e For some problems, there are obstacles
between this subspace the SGD path

e [actored linear models capture many
qualitative aspects of deep network training

® See more visualizations at our poster / demo /
paper

2015 International Conference on Representation Learning --- Goodfellow, Vinyals, and Saxe



