Qualitatively Characterizing Neural Network Optimization Problems

lan Goodfellow

Oriol Vinyals

Andrew Saxe

Traditional view of NN training

Factored linear view

Attractive saddle point view

(Cartoon of Dauphin et al 2014's worldview)

Questions

- Does SGD get stuck in local minima?
- Does SGD get stuck on saddle points?
- Does SGD wind around numerous bumpy obstacles?
- Does SGD thread a twisting canyon?

History written by the winners

- Visualize trajectories of (near) SOTA results
- Selection bias: looking at success
- Failure is interesting, but hard to attribute to optimization
- Careful with interpretation
 - SGD never encounters X?
 - SGD fails if it encounters X?

2-D subspace visualization

A special 1-D subspace

2-parameter deep linear model

Maxout / MNIST experiment

Other activation functions

Convolutional network

LSTM

MP-DBM

3-D Visualization

3-D MP-DBM visualization

Random walk control

3-D Plots Without Obstacles

2015 International Conference on Representation Learning --- Goodfellow, Vinyals, and Saxe

3-D Plot of Adversarial Maxout

0.26 0.24 0.22 42 0.20 44 projection 0.18 0.16 0.14 40 30 20

SGD naturally exploits negative curvature!

Obstacles!

Conclusion

- For most problems, there exists a linear subspace of monotonically decreasing values
- For some problems, there are obstacles between this subspace the SGD path
- Factored linear models capture many qualitative aspects of deep network training
- See more visualizations at our poster / demo / paper