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Traditional view of NN training
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Factored linear view
(Cartoon of

Saxe et al 2013’s
worldview)
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Attractive saddle point view
(Cartoon of

Dauphin et al 2014’s
worldview)
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• Does SGD get stuck in local minima?
• Does SGD get stuck on saddle points?
• Does SGD wind around numerous bumpy 

obstacles?
• Does SGD thread a twisting canyon?
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Questions
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• Visualize trajectories of (near) SOTA results
• Selection bias: looking at success
• Failure is interesting, but hard to attribute to 

optimization
• Careful with interpretation

• SGD never encounters X?
• SGD fails if it encounters X?
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History written by the winners
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2-D subspace visualization
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Cost

Projection 1 
Projection 0 
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A special 1-D subspace
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Interpolation plot

Learning curve
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2-parameter deep linear model
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Maxout / MNIST experiment
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Figure 1: Experiments with maxout on MNIST. Top row) The state of the art model, with adver-
sarial training. Bottom row) The previous best maxout network, without adversarial training. Left
column) The linear interpolation experiment. This experiment shows that the objective function is
fairly smooth within the 1-D subspace spanning the initial and final parameters of the model. Apart
from the flattening near ↵ = 0, it appears nearly convex in this subspace. If we chose the initial
direction correctly, we could solve the problem with a coarse line search. Local optima and barriers
such as ridges in the objective function do not appear to be a problem, nor does it appear that the
network needs to thread a narrow and winding ravine. Right column) The progress of the actual
SGD algorithm over time. The vast majority of learning happens in the first few epochs. Thereafter,
the algorithm struggles to make progress. The lack of progress does not appear to be due to moving
around obstacles. Instead, it may be due to a less exotic optimization difficulty, such as noise in the
estimate of the gradient, or poor conditioning.

Figure 2: The linear interpolation curves for fully connected networks with different activation
functions. Left) Sigmoid activation function. Right) ReLU activation function.
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Other activation functions

11

Published as a conference paper at ICLR 2015

Figure 1: Experiments with maxout on MNIST. Top row) The state of the art model, with adver-
sarial training. Bottom row) The previous best maxout network, without adversarial training. Left
column) The linear interpolation experiment. This experiment shows that the objective function is
fairly smooth within the 1-D subspace spanning the initial and final parameters of the model. Apart
from the flattening near ↵ = 0, it appears nearly convex in this subspace. If we chose the initial
direction correctly, we could solve the problem with a coarse line search. Local optima and barriers
such as ridges in the objective function do not appear to be a problem, nor does it appear that the
network needs to thread a narrow and winding ravine. Right column) The progress of the actual
SGD algorithm over time. The vast majority of learning happens in the first few epochs. Thereafter,
the algorithm struggles to make progress. The lack of progress does not appear to be due to moving
around obstacles. Instead, it may be due to a less exotic optimization difficulty, such as noise in the
estimate of the gradient, or poor conditioning.

Figure 2: The linear interpolation curves for fully connected networks with different activation
functions. Left) Sigmoid activation function. Right) ReLU activation function.

3



2015 International Conference on Representation Learning --- Goodfellow, Vinyals, and Saxe

Convolutional network
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Figure 5: Here we use linear interpolation to search for local minima. Left) By interpolating between
two different SGD solutions, we show that each solution is a different local minimum within this
1-D subspace. Right) If we interpolate between a random point in space and an SGD solution, we
find no local minima besides the SGD solution, suggesting that local minima are rare.

Figure 6: The linear interpolation experiment for a convolutional maxout network on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). Left) At a global scale, the curve looks very well-behaved.
Right) Zoomed in near the initial point, we see there is a shallow barrier that SGD must navigate.

There are of course multiple minima in neural network optimization problems, and the shortest path
between two minima can contain a barrier of higher cost. We can find two different solutions by us-
ing different random seeds for the random number generators used to initialize the weights, generate
dropout masks, and select examples for SGD minibatches. (It is possible that these solutions are not
minima but saddle points that SGD failed to escape) We do not find any local minima within this
subspace other than solution points, and these different solutions appear to correspond to different
choices of how to break the symmetry of the saddle point at the origin, rather than to fundamentally
different solutions of varying quality. See Fig. 5.

4 ADVANCED NETWORKS

Having performed experiments to understand the behavior of neural network optimization on su-
pervised feedforward networks, we now verify that the same behavior occurs for more advanced
networks.

In the case of convolutional networks, we find that there is a single barrier in the objective function,
near where the network is initialized. This may simply correspond to the network being initialized
with too large of random weights. This barrier is reasonably wide but not very tall. See Fig. 6 for
details.

To examine the behavior of SGD on generative models, we experimented with an MP-DBM (Good-
fellow et al., 2013a). This model is useful for our purposes because it gets good performance as
a generative model and as a classifier, and its objective function is easy to evaluate (no MCMC
business). Here we find a secondary local minimum with high error, but a visualization of the SGD
trajectory reveals that SGD passed far enough around the anomaly to avoid having it affect learn-
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A small barrier
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LSTM
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Figure 7: Experiments with the MP-DBM. Left) The linear interpolation experiment reveals a sec-
ondary local minimum with high error. Right) On the two horizonal axes, we plot components of
✓ that capture the extrema of ✓ throughout the learning process. On the vertical axis, we plot the
objective function. Each point is another epoch of actual SGD learning. This plot allows us to see
that SGD did not pass near this anomaly.

Figure 8: The linear interpolation experiment for an LSTM trained on the Penn Treebank dataset.

ing. See Fig. 7. The MP-DBM was initialized with very large, sparse, weights, which may have
contributed to this model having more non-convex behavior than the others.

Finally, we performed the linear interpolation experiment for an LSTM regularized with
dropout (Hochreiter & Schmidhuber, 1997; Zaremba et al., 2014) on the Penn Treebank
dataset (Marcus et al., 1993). See Fig. 8. This experiment did not find any difficult structures,
showing that the exotic features of non-convex optimization do not appear to cause difficulty even
for recurrent models of sequences.

5 DEEP LINEAR NETWORKS

Saxe et al. (2013) have advocated developing a mathematical theory of deep networks by studying
simplified mathematical models of these networks. Deep networks are formed by composing an
alternating series of learned affine transformations and fixed non-linearities. One simplified way to
model these functions is to compose only a series of learned linear transformations. The composition
of a series of linear transformations is itself a linear transformation, so this mathematical model lacks
the expressive capacity of a general deep network. However, because the weights of such a model
are factored, its learning dynamics resemble those of the deep network. In particular, while linear
regression is a convex problem, deep linear regression is a non-convex problem.

Deep linear regression suffers from saddle points but does not suffer from local minima of varying
quality. All minima are global minima, and are linked to each other in a continuous manifold.

Our linear interpolation experiments can be carried out analytically rather than experimentally in the
case of deep linear regression. The results are strikingly similar to our results with deep non-linear
networks.
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MP-DBM
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3-D Visualization
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3-D MP-DBM visualization

16



2015 International Conference on Representation Learning --- Goodfellow, Vinyals, and Saxe

Random walk control
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Figure 11: Plots of the projection along the axis from initialization to solution versus the norm
of the residual of this projection for random walks of varying dimension. Each plot is formed by
using 1,000 steps. We designate step 900 as being the “solution” and continue to plot 100 more
steps, in order to simulate the way neural network training trajectories continue past the point that
early stopping on a validation set criterion chooses as being the solution. Each step is made by
incrementing the current coordinate by a sample from a Gaussian distribution with zero mean and
unit covariance. Because the dimensionality of the space forces most trajectories to have this highly
regular shape, this kind of plot is not a meaningful way of investigating how SGD behaves as it
moves away from the 1-D subspace we study in this paper.

Stochastic gradient descent does not actually follow this path. We know that SGD matches this path
at the beginning and at the end.

One might naturally want to plot the norm of the residual of the parameter value after projecting
the parameters at each point in time into the 1-D subspace we have identified. However, it turns
out that in high dimensional spaces, the shape of this curve does not convey very much information.
See Fig. 11 for a demonstration of how this plot converges to a simple geometric shape as the
dimensionality of a random walk increases.

Plots of the residual norm of the projection for SGD trajectories converge to a very similar geometric
shape in high dimensional spaces. See Fig. 12 for an example of several different runs of SGD on
the same problem. However, we can still glean some information from this kind of plot by looking
at the maximum norm of the residual and comparing this to the maximum norm of the parameter
vector as a whole.

We show this same kind of plot for a maxout network in Fig. 13. Keep in mind that the shape of the
trajectory is not interesting, but the ratio of the norm of the residual to the total norm of the parameter
vector at each point does give us some idea of how much information the 1-D projection discards.
We see from this plot that our linear subspace captures at least 2/3 the norm of the parameter vector
at all points in time.
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3-D Plots Without Obstacles
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LSTM

Adversarial
ReLUs

Factored Linear
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3-D Plot of Adversarial Maxout
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SGD naturally exploits
negative curvature!

Obstacles!
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Conclusion

• For most problems, there exists a linear 
subspace of monotonically decreasing values 

• For some problems, there are obstacles 
between this subspace the SGD path 

• Factored linear models capture many 
qualitative aspects of deep network training 

• See more visualizations at our poster / demo / 
paper
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